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Abstract—Weighted sum-rate (WSR) maximization is a funda-
mental yet generally NP-hard problem in communication system
design. Existing optimization-based methods, such as weighted
sum-minimum mean-square error (WMMSE), often suffer from
high computational overhead in the subproblem, such as matrix
inversion. Recent studies [1], [2] have reinterpreted WMMSE
within the minorization-maximization (MM) framework, yielding
matrix-inversion-free algorithms with improved efficiency. In this
paper, we analyze the landscape of the WSR objective and show
that all optimal solutions lie on the boundary of the beamforming
constraint set. Moreover, we prove that the WSR function
is globally L-smooth, which enables us to establish a global
sublinear convergence rate for the MM-based algorithm proposed
in [1], [2]. To further accelerate computation, we propose a neural
network architecture inspired by the MM algorithm, termed
MM-Net, which learns to predict a tighter upper-bound constant
by exploiting a key matrix in the algorithm. Simulation results
demonstrate that MM-Net achieves faster convergence than
both WMMSE and MM, while also offering lower complexity
compared to state-of-the-art deep learning-based methods.

Index Terms—Weighted sum-rate (WSR) maximization, non-
convex beamforming, minorization-maximization (MM), conver-
gence rate, algorithm unrolling.

I. INTRODUCTION

Weighted sum-rate (WSR) maximization is a fundamental
problem in communication system design, particularly in opti-
mizing beamformers for multi-antenna channels [3]. However,
this problem is generally NP-hard, making it challenging to
solve optimally [4]. State-of-the-art optimization methods for
WSR maximization typically focus on obtaining stationary
point solutions. A widely used approach is a block coor-
dinate ascent (BCA) method called weighted sum-minimum
mean-square error (WMMSE) [5], [6], which exploits the
equivalence between maximizing the signal-to-interference-
plus-noise ratio (SINR) and minimizing the mean squared
error. Another method employs fractional programming [7],
[8], which addresses the fractional structure of SINR in WSR.
This approach also follows the BCA principle and shares sim-
ilarities with WMMSE. A key limitation of WMMSE is that
it relies on solving a constrained quadratic program in each
iteration. In particular, under a total power constraint, the op-
timization involves solving a quadratic-constrained quadratic
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program (QCQP), which requires matrix inversion at the trans-
mit antenna dimension. This computational burden becomes
prohibitive for large-scale antenna systems, such as massive
MIMO, where efficiency is a critical concern. To address
this issue, [1], [2] reinterpreted WMMSE via a constructive
analysis through minorization-maximization (MM) framework
and proposed a novel MM algorithm that fully leverages the
advantages of the MM framework to eliminate repeated matrix
inversions. Other numerical optimization approaches have also
been explored to mitigate this challenge. A notable example
is [9], which introduced an improved WMMSE method by
exploiting the beamforming structure under a total power
constraint. However, this approach is limited to WSR max-
imization in single-cell scenarios, whereas the MM algorithm
is applicable to more general multi-cell settings.

In [2], the authors established a connection between the
proposed MM algorithm and the projected gradient descent
(PGD) method, highlighting its potential for analyzing the
convergence rate of the MM algorithm. They further pointed
out that this connection can facilitate the design of inter-
pretable deep neural networks through the algorithm unfolding
technique [10], thereby accelerating convergence. In this paper,
we address both of these directions.

Regarding the convergence rate analysis, it is important to
note that in [11], a convergence rate result has been established
for the MM algorithm in [1], [2]. However, this analysis
relies on the assumption that the optimal point is an interior
point and that the WSR function is strongly concave within
a neighborhood around it. In practice, the validity of these
assumptions is questionable. In this paper, by analyzing the
landscape of the WSR function, we prove that all stationary
points of the WSR maximization problem lie on the boundary
of the beamforming constraint set. This result implies that
the assumption of an interior stationary point made in [11]
is never satisfied. To illustrate this result, we numerically
examine a WSR maximization problem in a SISO interference
channel, formulated as in (1). We consider a system with two
base stations (BSs), each with transmit powers p; and po,
respectively. The channels h; ; are generated from CN(0, 1),
for 4,7 = 1,2, and the noise powers 07 = 03 = 1. The MM

EUSIPCO 2025



1 hyal?
max —log |1+ 7| 12’1| P
p1,p2 2 |h1’2| P + g%

1 hao|?
+ - log 1—&—7' 22’2| P2 5
2 |ha2,1]" p1 + 03

st. 0<p1,p2 <10

Fig. 1: The WSR landscape.

Trajectory 1

( ‘
—*— Trajectory 2 \_

[}

Fig. 2: MM convergence trajectories.

method is applied to solve this problem. Figures 1 and 2 depict
the optimization landscape along with convergence trajectories
from three different initializations. It can be observed that the
points (0,10) and (10,0) are two stationary solutions, both
located on the boundary of the constraint set. Moreover, at
(0,10), the objective function is convex in the p; direction,
violating the strong local concavity assumption in [11], where
the Hessian is assumed to be negative definite. In addition, we
show that the WSR function is globally L-smooth, with the
smoothness constant L determined solely by the WSR weights,
channel information, and noise power. This result enables us
to establish a global sublinear convergence rate for the MM
algorithm.

The core idea of the MM algorithm proposed in [1] is to
construct surrogate functions for the WSR objective. To gener-
ate such a surrogate at each iteration, an upper-bound constant
must be computed, which depends on the spectral radius of
an intermediate matrix whose dimension is determined by
the number of transmit antennas. Although fast approximation
methods exist for estimating the spectral radius, they often lead
to slower convergence. To address this limitation, we propose
an unfolded neural network inspired by the MM algorithm,
termed MM-Net, which serves as a data-driven approximation
to its numerical counterpart. MM-Net is designed to predict a
tighter upper-bound constant by learning the structure of a key
matrix in the MM algorithm, thereby accelerating convergence.

Several studies have explored deep learning-based ap-
proaches for WSR maximization. In [12], the authors proposed
an end-to-end multilayer perceptron (MLP) to approximate the
full mapping of the WMMSE algorithm. While the MLP effec-
tively approximates WMMSE in SISO channels, its parameter
size becomes prohibitively large in general MIMO interference
broadcast channels, rendering training difficult. To alleviate
computational burden, [13] proposed an unfolded WMMSE
algorithm (IAIDNN), which replaces matrix inversions with
simple nonlinear operations during forward propagation. Simi-
larly, [14] introduced a matrix-inversion-free WMMSE method
(WMMSE-Net), which approximates the QCQPs in WMMSE
via a fixed number of PGD iterations in the MISO setting;
this method was later extended to MIMO systems in [15].
In contrast to these approaches, the input dimension of the

proposed MM-Net depends only on the number of transmit
antennas, making it more scalable and adaptable to transferable
system designs. Simulation results show that MM-Net con-
verges faster than both WMMSE and MM algorithms, while
achieving lower computational complexity than IAIDNN and
WMMSE-Net.

II. WSR MAXIMIZATION USING MM ALGORITHM

This section provides a review of the MM algorithm for
WSR maximization, as developed in [1], [2]. Consider a K-
cell interfering broadcast channel with K BSs and I users
in cell k, where £k = 1,...,K. Let N}é and N[k denote
the number of antennas at BS %k and user i, respectively,
where ¢ = 1,...,I; and kK = 1,..., K. The beamforming
matrix from BS £ to user i, is denoted by W, € (CNEXka,
where N7 is the dimension of the transmit signal. The channel
between BS & and user iy, is represented by H;, j € i XN’i.
We assume that the data streams have covariance I and that
the noise for user ¢;, follows a circularly symmetric complex
Gaussian distribution with mean 0 and covariance o7, I. The
WSR maximization problem can be formulated as follows:

K I

[ 33 o logdet (I+ Wi HY FLUH, (W)
‘k k=11=1

st. {Wi}k eCr, Vk=1,...,K, )

— HygH 2
where ¥y = 3 0 Hiy W, W HE | + o7 I, for
i =1,....]y and k = 1,..., K, and C is a convex and
bounded beamforming constraint set for the k-th BS, which
can represent various practical constraints, such as a total

power constraint or per-antenna power constraints.

Denote the objective in (2) as f({W,,}). To apply the
MM algorithm, the key step is to construct a lower-bound
surrogate function such that the resulting subproblems are
computationally efficient to solve. Based on [16, Proposition
7], we obtain the surrogate function fi;({W,,}) at iterate
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Algorithm 1 WSR Maximization via MM

Input: The channel {H;, ;} and noise power o7 .

1 Initialize ¢ < 0 and {W? }.
2: while not convergence do
3. Compute 7},
& W T, (W + G,
50 t+—t+1.
6: end while
Output: Beamforming matrices {Wfk}

{W! } in (3), where

Al _Zaﬂ ( Z Hj, W'

() (n,m)

H
H]l m

(wi,)"

—1

~1
+ afﬁ) H; W' (W} ) N FL) T Hy
and
-1
Gfk = (O[U H'lk k ( ) HUmk - Ai) Wfk
fort=1,...,Iyand k =1,..., K. According to [2, Proposi-

tion 16], we further get the surrogate function fo ({W;, }) in
(4), where 1}, > Amax (AL). Within the MM framework, at the
t-th iteration, we solve the following optimization problem:

K I 1 2
min W, —W! — —G!
{wi} ;; e )
st. {Wi}k eCr, Vk=1,... K,
whose solution is given by
1
Wf:l =TIl <Wfk + %Gfk> , (6)

where Il¢, (-) is the orthogonal projection onto Cj,. We sum-
marize the overall MM algorithm in Algorithm 1.

III. CONVERGENCE RATE ANALYSIS

We examine the first-order optimality condition:
VWL - VA WL} = VA ({Wi}) -G =0

Thus, the MM algorithm can be viewed as a PGD method
with iteration-dependent stepsize 1/7%, i.e.,

W 1, (w; v <{wfk}>) o
k

fori=1,..., Iy and k = 1,..., K. We further consider the
second-order information at {Wﬁk }:
TUWLY - VR (WD)

= V2 ({Wi,}) +2A5 =0,
Therefore, the Hessian of f({W;,_}) can be bounded.
Lemma 1. The Hessian of the WSR can be bounded as
FUWLY) = —2A = —L1, Y{W;}  (§

5 matrix A=

where constant L = maxy ;. l) = L H, k

blkdiag(A1,,..., A, .. AlK,.. A, and A =
blkdiag(Ag, ..., Ay) € CNENINENG,

According to Lemma 1, the WSR objective function is
globally L-smooth. While a similar result is presented in
[14], our definition of L is independent of the beamforming
constraints, thereby guaranteeing global L-smoothness over
the whole domain, which constitutes a stronger property.
Based on [17], we further have the following theorem.

Theorem 2. Let {{Wfk}} >0 be the beamformer sequence
generated by Algorithm 1 for solving the WSR problem (2).
Then, all limit points of {{Wfk}}po are stationary points
of problem (2) and B

mln Wit _w
n > W

(l k)

> _ = fF({Wi})
MHF < M(t+ 1) )

where M =n — % wzth nt=n > L and f* is the optimal

WSR of problem (2)

In contrast to the convergence rate analysis in [11], Theorem
2 establishes a rate that does not rely on the assumption that
the stationary point is a strict local optimum residing in a
neighborhood where the objective function is concave. Next,
we establish a key theoretical result, which characterizes the
relationship between the gradient of the WSR function and the
beamformers.

Lemma 3. Given any beamformers {W,,_}, the following
relation holds

> tr (WHG,) >0,
(k)

and the equality holds if and only if H;, W, = 0 for all
i=1,....,Ipand k=1,... K.
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Fig. 3: The architecture of the MM-Net for the k-th cell

Lemma 3 shows that the gradient of the WSR function and
the beamforming matrices are aligned in the same direction.
Based on this, we establish the following theorem.

Theorem 4. The gradient of the WSR objective is zero if and
only if H;, ;W;, =0foralli=1,...,Iyandk=1,... K.

It is worth noting that Lemma 2 in [9] corresponds to a
special case of Theorem 4 when restricted to the single-cell
scenario. Leveraging the insights provided by Theorem 4, we
derive the following result.

Corollary 5. The optimal beamformers { Wi } of the problem
(2) necessarily lie on the boundary of the constraint set C.

IV. MM-NET: A DEEP LEARNING ADAPTATION

The MM algorithm requires computing the step size 1/},
where 7}, is associated with the maximum eigenvalue of the
matrix A. However, explicitly computing this eigenvalue can
be computationally intensive in massive MIMO systems. To
address this issue, [1], [2] propose approximating 7! using
the Frobenius norm, ie., 7. = |Ag|/r. This substitution
significantly reduces computational complexity, but may also
affect the convergence speed of the algorithm.

In this section, we propose a deep learning model based
on the deep unfolding technique [10], inspired by the MM
algorithm and referred to as MM-Net. Instead of explicitly
computing 7}, we employ a fully connected neural network
Net(-) to predict the step size. The input to the network
is vec([R{A,},S{AL}]) € R2¥D” and output )\ is a
non-negative scalar representing the predicted step size. The
hidden layers of the network use the ReLU(:) activation
function, while the output layer adopts the softplus activation
(softplus(z) = log(1l + €%)), which ensures non-negativity
and avoids vanishing gradients. We train the network by
minimizing the negative WSR as the loss function:

LD == wief ({Te, (WL, +MGE) Y,

where w; > 0 is the weight of the ¢-th layer. The architecture
of the proposed MM-Net is illustrated in Fig. 3.

V. NUMERICAL RESULTS

The numerical experiment was conducted on a desktop
equipped with an Intel i5-11500 CPU. The proposed MM-
Net was implemented in Python 3.12.8 using PyTorch 2.5.1,
with both training and inference performed on the CPU. In
the following experiments, we focus on a special case of the
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Fig. 4: Numerical verification of convergence rate.

broadcast interference channel, namely the single-cell setting
with ' = 1. We adopt a total power constraint, i.e.,

I
C= {{Wz‘}f_1 > W7 < P} -
i=1

The channel coefficients are independently generated from
the complex Gaussian distribution CA/(0,1), and the noise
variances are set uniformly as 0? = o2 for all i = 1,..., 1.
The signal-to-noise ratio (SNR) is defined as SNR = P/o?.
The beamforming matrices are initialized randomly within the
constraint set C. The methods compared in this section include
the WMMSE algorithm (WMMSE) [6], the MM algorithm
(MM) [2], the iterative algorithm-induced deep unfolding neu-
ral network (IAIDNN) [13], the matrix-inverse-free WMMSE-
based deep unfolding neural network (WMMSE-Net) [15], and
the proposed MM-Net. All reported results are averaged over
1000 independent Monte Carlo simulations.

A. Numerical verification of convergence rate

We first empirically evaluate the convergence behavior. We
set [ = 2, N* = 4, and N” = N* = 2. Fig. 4 illustrates
the sublinear convergence of both the MM algorithm and a
projected gradient descent (PGD) method with a fixed step
size A = 1/L. The iteration update gap is defined as

2
0= min
7=0,...,t—1

I
Z “W£T+l) o WET) '
=1 F

While the PGD method exhibits significantly slower conver-
gence than MM, it still maintains a sublinear rate.
B. Comparison with iterative algorithms

To demonstrate the performance of the unfolding algorithm
in a massive MIMO scenario, we set I = 8, N! = 128,
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Fig. 6: Performance comparison with unfolding algorithms.

N" = N* = 4, and SNR = 0dB in this experiment. The
training set consists of 1 x 103 samples with a batch size of
10. The learning rate is set to 1 x 1073, and the loss function
weight is uniformly defined as w; = 1/7. The number of
unfolded layers is chosen as 7" = 30. In Fig. 5(a), the unfolded
algorithm MM-Net converges faster than the MM algorithm
but slower than the WMMSE algorithm, indicating that MM-
Net successfully accelerates the convergence of MM. In Fig.
5(b), MM-Net achieves the same level of WSR with a shorter
runtime compared to both MM and WMMSE, demonstrating
its computational efficiency. These results highlight the effec-
tiveness of MM-Net in learning upper-bound parameters and
improving the performance of WSR maximization.

C. Comparison with unfolding algorithms

We compare several unfolding algorithms under the setting
I =4, Nt =16, N" = N® = 4, and SNR = 10dB. All
unfolding algorithms are configured with 10 layers. As shown
in Fig. 6(a), WMMSE-Net achieves the fastest convergence,
followed by MM-Net and then MM. However, Fig. 6(b) shows
that, to attain the same WSR level, MM-Net achieves a shorter
runtime compared to both IAIDNN and WMMSE-Net. This
advantage may be attributed to the fact that WMMSE-Net
employs a double-loop structure which, although it accelerates
convergence in terms of iterations, introduces higher compu-
tational overhead than the single-loop design of MM-Net.

VI. CONCLUSION

In this paper, we have investigated the WSR maximization
problem, a fundamental yet generally NP-hard task in com-
munication system design. We have analyzed the optimization
landscape of the WSR objective and have established that
all optimal solutions necessarily lie on the boundary of the

beamforming constraint set. Furthermore, we have proved that
the WSR objective is globally L-smooth, which has enabled
the derivation of a global sublinear convergence rate for the
MM algorithm proposed in [1], [2]. To enhance computational
efficiency, we have proposed a deep unfolded neural net-
work inspired by the MM algorithm, termed MM-Net, which
predicts tighter upper-bound constants by learning from key
matrices in the MM updates. Simulation results have validated
the theoretical convergence rate and demonstrated that MM-
Net achieves superior convergence compared to both the state-
of-the-art iterative algorithms and deep unfolding methods.
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