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Abstract—Octagonal shrinkage and clustering algorithm for
regression (OSCAR) is an effective method for feature grouping,
which aims to select important highly-correlated groups of
features relevant to the observations. Unfortunately, it is known
that OSCAR may cause estimation bias, which is undesirable for
many applications. Whereas the Moreau enhancement of convex
regularizers promoting sparsity or low-rankness has been studied
extensively to reduce the estimation bias, its use in the feature
grouping task still remains unexplored. In this paper, we investi-
gate the debiasing effect of the discrete measure defined by a limit
of the Moreau-enhanced OSCAR regularizer, which is referred to
as the LME-OSCAR regularizer. The proximity operator of the
LME-OSCAR regularizer can be computed efficiently by using
the dynamic programming. Numerical examples demonstrate the
efficacy of the proposed discrete measure.

Index Terms—proximity operator, Moreau enhancement, OS-
CAR, feature grouping.

I. INTRODUCTION

Highly correlated features may be included in the observa-
tions in some applications of sparse regression. When the least
absolute shrinkage and selection operator (lasso) [1], which
is a standard method of sparse regression, is employed in
this situation, only one feature from each group tends to be
selected [2]. However, it is often desirable to select all the
important groups of features relevant to the observations to
achieve better interpretability of the regression results. Such
a situation occurs in various fields such as gene expression
analysis [3], brain imaging [4], and analysis of protein-protein
interaction networks [5].

To extract important groups of the features, many feature
grouping methods have been proposed such as the elastic
net [2], the fused lasso [6], the clustered lasso [7], and the
octagonal shrinkage and clustering algorithm for regression
(OSCAR) [8], [9]. Unfortunately, a solution obtained by the
elastic net does not have the identical coefficients for the
highly correlated features in general, and this may lead to
difficulty in interpretation of the group structure [8], [9].
Besides, the fused lasso promotes the equality of coefficients
only for the successive coefficients, and the clustered lasso
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does not group the negatively correlated features [9], [10].
In contrast to those methods, OSCAR is free from such
limitations. Unfortunately, it is known that OSCAR may
overpenalize the large pairwise coefficient differences [5], [9],
which may cause estimation bias.

To reduce the estimation bias caused by convex regularizers
which promote sparsity of a vector or low-rankness of a
matrix, the generalized Moreau enhancement (GME) penalty
has been proposed in [11]1, and related techniques have been
studied intensively [12]–[14]. It is known that the Moreau
enhancement parametrically bridges the gap between a direct
discrete measure and its convex envelope for some functions.
For example, the Moreau enhancement of the ℓ1 norm (known
as the minimax concave (MC) penalty [15], [16]) parametri-
cally bridges the ℓ0 psuedonorm (which counts the number of
nonzero components) and the ℓ1 norm.

A natural way to reduce the estimation bias of the OSCAR
regularizer would be the use of the Moreau-enhanced OS-
CAR regularizer. Recently, the debiased OSCAR (DOSCAR)
shrinkage is proposed as an extension of the single-valued
proximity operator of the Moreau-enhanced OSCAR regular-
izer, and its debiasing effect is studied [17]. However, unlike
the ℓ1 norm, no direct discrete measure corresponding to the
OSCAR regularizer is known, to the best of our knowledge.
Hence, it is still unclear if the Moreau-enhanced OSCAR
regularizer can be seen as an approximation of a discrete
measure which has a desirable property.

In this paper, we investigate the discrete measure for de-
biased feature grouping defined by a limit of the Moreau-
enhanced OSCAR regularizer, which we refer to as the LME-
OSCAR regularizer. It turns out that the LME-OSCAR regu-
larizer yields smaller values for vectors which are sparse or
have group structures (in a sense that some coefficients have
identical values). Hence, a sparse or grouped solution is likely
to be obtained when the LME-OSCAR regularizer is adopted
as a penalty function. This implies that the Moreau-enhanced
OSCAR regularizer yields a parametric bridge between the
OSCAR regularizer and a desirable discrete measure. We
derive an efficient algorithm based on the dynamic pro-

1In [11], a more general penalty function than the GME penalty is proposed,
which is applicable to broader scenarios.
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gramming to compute the proximity operator of the LME-
OSCAR regularizer. In numerical examples, we demonstrate
that the LME-OSCAR regularizer significantly outperforms
the OSCAR regularizer in the feature grouping task.

II. PRELIMINARIES

This section briefly introduces the notation, definitions, and
selected elements of convex analysis.

A. Notation and Definitions

Throughout the paper, let R and N denote the set of real
numbers and nonnegative integers, respectively. For any n ∈
N∗ := N \ {0}, let 1, n := {1, 2, . . . , n}. For any m,n ∈ N∗,
the ith column of A ∈ Rm×n is denoted as ai. The matrix
transpose is denoted as (·)⊤. For any x ∈ Rn and p ≥ 1, we
define the ℓp norm by ∥x∥p := (

∑n
i=1 |xi|p)

1/p.

B. Selected Elements of Convex Analysis

A function f : Rn → (−∞,+∞] is convex if f(ax+ (1−
a)ξ) ≤ af(x) + (1 − a)f(ξ) for any x, ξ ∈ Rn and any
a ∈ (0, 1). A function f : Rn → (−∞,+∞] := R∪{+∞} is
proper if dom f := {x ∈ Rn | f(x) < +∞} ̸= ∅. A function
f : Rn → (−∞,+∞] is lower-semicontinuous on Rn if the
level set lev≤a f := {x ∈ Rn | f(x) ≤ a} is closed for any
a ∈ R. Given any proper function f : Rn → (−∞,+∞], we
define the proximity operator of f of index γ > 0 by

Proxγf : Rn → 2R
n

: x 7→ argmin
ξ∈Rn

(
f(ξ) +

1

2γ
∥x− ξ∥22

)
,

(1)

where 2R
n

denotes the power set (the family of all subsets)
of Rn. Given a proper lower-semicontinuous convex function
f : Rn → (−∞,+∞], the Moreau envelope of f of index
γ > 0 is defined by [18]–[20]

γf : Rn → R : x 7→ min
ξ∈Rn

(
f(ξ) +

1

2γ
∥x− ξ∥22

)
= f(Proxγf (x)) +

1

2γ
∥x− Proxγf (x)∥22. (2)

III. PROPOSED DISCRETE MEASURE AND ITS PROXIMITY
OPERATOR

In this section, we derive a closed-form expression of the
LME-OSCAR regularizer, and show that its proximity operator
can be computed efficiently. The theoretical result in this paper
is presented without proof. An extended version of this work
including a full proof will be published elsewhere.

A. A Limit of Moreau-Enhanced OSCAR Regularizer

We consider the task of estimating the sparse coefficient
vector x⋄ ∈ Rn from a given input matrix A ∈ Rm×n and an
observation vector modeled as

y = Ax⋄ + ε ∈ Rm, (3)

where ε ∈ Rm is the zero-mean additive white Gaussian noise.
The matrix A is assumed to have groups of highly correlated
column vectors. OSCAR aims to obtain a sparse coefficient
vector in which the coefficients corresponding to the highly

correlated vectors are identical. The formulation of OSCAR
is defined by [8]

min
x∈Rn

1

2
∥y −Ax∥22 +ΩOSCAR

λ1,λ2
(x), (4)

where λ1, λ2 > 0, and

ΩOSCAR
λ1,λ2

: Rn → [0,+∞)

x 7→ λ1∥x∥1 + λ2

∑
i<j

max{|xi|, |xj |}. (5)

For the Moreau enhancement2 of the OSCAR regularizer

(ΩOSCAR
λ1,λ2

)γ−1/2In
:= ΩOSCAR

λ1,λ2
− γΩOSCAR

λ1,λ2
, (6)

it holds by [21, Proposition 12.33] that

lim
γ→+∞

(ΩOSCAR
λ1,λ2

)γ−1/2In(x) = ΩOSCAR
λ1,λ2

(x), ∀x ∈ Rn. (7)

We investigate the LME-OSCAR regularizer defined by

Υλ1,λ2
:= lim

γ↓0
2γ−1(ΩOSCAR

λ1,λ2
)γ−1/2In . (8)

By (7) and (8), one can see that the Moreau-enhanced OS-
CAR regularizer parametrically bridges the OSCAR and the
LME-OSCAR regularizers. The following proposition shows
a closed-form expression of the LME-OSCAR regularizer in
the two-dimensional case. Let

Kn
≥,+ := {x ∈ Rn | x1 ≥ x2 ≥ . . . ≥ xn ≥ 0} , (9)

and |x|↓ := P (|x|)|x| ∈ Rn, where P (|x|) ∈ Rn×n denotes
a permutation matrix which sorts the components of |x| :=
[|x1|, |x2|, . . . , |xn|]⊤ ∈ Rn in non-increasing order. Then, it
is sufficient to consider the case in which x ∈ Kn

≥,+ since

(ΩOSCAR
λ1,λ2

)γ−1/2In(x) = (ΩOSCAR
λ1,λ2

)γ−1/2In(|x|↓). (10)

Proposition 1 (LME-OSCAR regularizer: two-dimensional
case). Let n := 2. Then, for any x ∈ K2

≥,+, it holds that

Υλ1,λ2
(x) =


(λ1 + λ2)

2 + λ2
1, if x1 > x2 > 0,

(2λ1 + λ2)
2/2, if x1 = x2 > 0,

(λ1 + λ2)
2, if x1 > x2 = 0,

0, if x1 = x2 = 0.

(11)

Proof. The proof is due to the general result presented in
Proposition 2.

Equation (11) indicates the LME-OSCAR regularizer is a
certain discrete function shown in Figure 1. This function
yields a smaller value outside the set {x ∈ K2

≥,+ | x1 > x2 >
0}. Hence, when (11) is used as a regularizer, the solution x̂
is likely to satisfy

x̂1 = x̂2 ≥ 0 or x̂1 ≥ x̂2 = 0, (12)

which indicates that a sparse or grouped solution is likely
to be obtained. Figure 2 shows the contours of the Moreau-
enhanced OSCAR regularizer (ΩOSCAR

λ1,λ2
)γ−1/2In for γ := 2 in

2Let (X , ⟨·, ·⟩X ) and (Z, ⟨·, ·⟩Z) be the finite-dimensional real Hilbert
spaces. For any proper lower-semicontinuous convex function Ψ : X →
X coercive with domΨ = X , and an arbitrary bounded linear operator
B : X → Z , the generalized-Moreau-enhanced penalty is defined by [11]
ΨB : x 7→ Ψ(x)−minz∈X

(
Ψ(z) + ∥B(x− z)∥2Z/2

)
.
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case 2

case 4

case 3

case 1

Fig. 1: Visualization of the four cases of (11).

the two-dimensional case. It can be seen that the contours
of the Moreau enhancement sharpen those of the OSCAR
regularizer. Hence, the solutions are more likely to satisfy (12).
The following proposition extends the result of Proposition 1
to the n-dimensional case for n ≥ 2.

Proposition 2 (LME-OSCAR regularizer: general case). Let
w := [w1, w2, . . . , wn]

⊤ ∈ Rn such that

wi = λ1 + λ2(n− i), ∀i ∈ 1, n. (13)

Let Kn
> := {x ∈ Rn | x1 > x2 > . . . > xn}, χR++

:

R++ → {0, 1} : x 7→

{
1, if x ∈ R++,

0, if x /∈ R++,
and the set Sl with

card(Sl) ≥ 2 be the lth group of consecutive indices for l =
1, 2, . . . , q with q ∈ 1, n, such that

xj = xk, ∀j, k ∈ Sl, and, (14)
xj ̸= xk, ∀j ∈ Sl, ∀k ∈ 1, n \ Sl. (15)

For example, it holds that S1 = {3, 4, 5}, S2 = {7, 8}, S3 =
{9, 10} when

x1 > x2 > x3 = x4 = x5︸ ︷︷ ︸
first group

> x6 > x7 = x8︸ ︷︷ ︸
second group

> x9 = x10︸ ︷︷ ︸
third group

> x11. (16)

Then, it holds for any n ∈ N∗ and x ∈ Kn
≥,+ that

Υλ1,λ2
(x)

=



∥w∥22, if x ∈ Rn
++ ∩ Kn

> (case 1),

∥w∥22 −
q∑

l=1

∑
j∈Sl

(
wj −

∑
k∈Sl

wk

card(Sl)

)2

,

if x ∈ Rn
++ ∩ (Kn

>)
c (case 2),

∥w∥22 − w2
n, if x ∈ (Rn

++)
c ∩ Kn

> (case 3a),

∥w∥22 −
q∑

l=1

∑
j∈Sl

(
wj −

∑
k∈Sl

wk

card(Sl)
χR++(xj)

)2

−w2
nχR++

(xn−1),

if x ∈ Kn
≥,+ \ (Rn

++ ∪ Kn
> ∪ {0})

(case 3b),

0, if x = 0 (case 4),
(17)

−2 −1 0 1 2
−2

−1

0

1

2

Fig. 2: Contours of the Moreau-enhanced OSCAR regularizer
(red) for λ1 = λ2 := 0.5 and γ := 2 and the OSCAR
regularizer (gray) in the two-dimensional case.

case 3a

case 3b

case 1 case 2

case 4

(a)

case 3a

case 1 

case 3b

case 4

case 2

(b)

Fig. 3: (a) Inclusion relation among the five cases of (17). (b)
Visualization of the five cases in the three-dimensional case.

where Sc denotes the compliment set of any set S ⊂ Rn.

The inclusion relation of the cases of (17) and visualization
of the cases in the three-dimensional case are shown in Figures
3(a) and 3(b), respectively. Unlike (11), (17) is divided into
five cases (case 3b does not exist in the two-dimensional case).

Proposition 2 indicates that, the LME-OSCAR regularizer is
bounded above by the constant ∥w∥22, and it is strictly smaller
than this bound on the set (Kn

>)
c ∪ (Rn

++)
c. Since x ∈ Kn

≥,+
by assumption, x ∈ Kn

> implies that x has no group of equal
indices, and x ∈ Rn

++ implies that x is dense. Hence, when
(17) is used as a penalty, a sparse or grouped solution is likely
to be obtained.
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B. Proximity Operator of the LME-OSCAR RegularizerΥλ1,λ2

For any x ∈ Rn, the proximity operator of Υλ1,λ2 defined
in (17) can be computed efficiently as in the following two
propositions.

Proposition 3 (Proximity operator of the LME-OSCAR reg-
ularizer). For any x ∈ Rn, it holds that

ProxΥλ1,λ2
(x) = Sign(x) ◦ P (|x|)⊤ ProxΥλ1,λ2

(|x|↓), (18)

where Sign : Rn → {−1, 1}n : x 7→ [sign(x1), sign(x2), . . . ,
sign(xn)]

⊤ with sign(a) := 1 if a ≥ 0; sign(a) := −1
otherwise.

The vector ProxΥλ1,λ2
(|x|↓), where |x|↓ ∈ Kn

≥,+, can be
computed by using the following proposition.

Proposition 4 (Computation of ProxΥλ1,λ2
(|x|↓) in (18)). Let

x ∈ Kn
≥,+. Define w as in (13). Let Si,q := {(kj , lj)qj=1 ⊂

1, i
q | 1 ≤ k1 < l1 < k2 < l2 < · · · < kq < lq ≤ i} for any

i ∈ 2, n and q ∈ 1, ⌈i/2⌉, where ⌈·⌉ is the ceiling function.
Let

ηmin := min
i∈1,6

ηi, (19)

where η1 := ∥w∥22, η2 := ∥w∥22 − w2
n + (1/2)x2

n η3 :=
∥w∥22 − dn, η4 := ∥w∥22 − dn−1 − w2

n + (1/2)x2
n, η5 :=

∥w∥22−maxi∈2,n−1{di−1+
∑n

j=i(w
2
j −(1/2)x2

j )}, and η6 :=

(1/2)∥x∥22. Here,

di :=


0, if i = 1,

max
q∈1,⌈i/2⌉

max
(Sj)

q
j=1∈Si,q

q∑
l=1

vSj , if i ∈ 2, n,
(20)

where

vSj
:=
∑
j∈Sj

(wj−
∑

k∈Sj
wk

card(Sj)

)2

− 1

2

(
xj−

∑
k∈Sj

xk

card(Sj)

)2
 .

(21)

Let q̂ ∈ argmax
q∈1,⌈i/2⌉ max(Sj)

q
j=1∈Si,q

∑q
l=1 vSj

and

(Ŝj)
q̂
j=1 ∈ argmax

(Sj)
q̂
j=1∈Si,q̂

∑q̂
l=1 vSj

. Then, it holds that

ProxΥλ1,λ2
(x) =

6∪
i=1

Ci, (22)

where Ci :=

{
{p(i)}, if ηmin = ηi,

∅, otherwise,
for any i ∈ 1, 6.

Here, p(1) := x, p
(2)
j :=

{
0, if j = n,

xj , if j ̸= n,
p
(3)
j :=

∑
k∈Ŝl

xk

card(Ŝl)
, if j ∈ Ŝl,

xj , if j /∈
∪q̂

l=1 Ŝl,

p
(4)
j :=

{
0, if j = n,

p
(3)
j , if j ̸= n,

p
(5)
j :=

{
0, if j ∈ Ŝq̂,

p
(3)
j , if j /∈ Ŝq̂,

and p(6) := 0 for any j ∈ 1, n

and l ∈ 1, q̂.

Algorithm 1 Dynamic programming for (di)ni=1 and (Ŝl)
q̂
l=1

Input: x ∈ Rn, λ1, λ2 > 0
1: Compute w by (13)
2: d1 := 0, S1 := ∅
3: for i = 2, 3, . . . , n do
4: t := di−1

5: for j = 1, 2, . . . , i− 1 do
6: Compute vj,i by (21)
7: if t < dmax{j−1,1} + vj,i then
8: t := dmax{j−1,1} + vj,i
9: Si := Smax{j−1,1} ∪ {j, i}

10: end if
11: end for
12: di := t
13: end for
14: q̂ := card(Sn)/2
15: for l = 1, 2, . . . , q̂ do
16: Ŝl := s2l−1, s2l, where sl is the lth smallest element

of Sn.
17: end for
Output: (di)

n
i=1, (Ŝl)

q̂
l=1

For any x ∈ Kn
≥,+, ProxΥλ1,λ2

(x) given in (22) depends
on (di)

n
i=1 and (Ŝl)

q̂
l=1, which can be efficiently computed

by the dynamic programming [22] as shown in Algorithm 1.
Here, Algorithm 1 is derived from the following recurrence:

di=


0, if i = 1,

max

{
di−1, max

j∈1,i−1

(
dmax{j−1,1} + vj,i

)}
, if i ∈ 2, n.

(23)
One can obtain q̂ and (Ŝl)

q̂
l=1 simultaneously in Algorithm 1.

Note that card(Si)/2 is an integer for all i ∈ 1, n. Let Rλ1,λ2 :
Rn → Rn be a selection of ProxΥλ1,λ2

, i.e., Rλ1,λ2(x) ∈
ProxΥλ1,λ2

(x) for any x ∈ Rn. Then, the computational cost
to obtain Rλ1,λ2

(x) scales in O(n2).

IV. NUMERICAL EXAMPLES

We consider the sparse estimation task, particularly when
there are groups of highly correlated features. The standard
linear model in (3) with m := 80 and n := 30 is used. The
noise vector ε ∈ Rm is generated i.i.d. from the zero-mean
Gaussian distribution with signal-to-noise ratio (SNR) 20 dB.
We consider the following two toy datasets, which are similar
to those used in [2], [8], [9]:

A. The column vectors of A ∈ R80×30 are generated as

ai :=


ã1 + ϵi, if i ∈ G1 := 1, 5,

ã2 + ϵi, if i ∈ G2 := 6, 10,

ã3 + ϵi, if i ∈ G3 := 11, 15,

ϵi, if i ∈ G4 := 16, 30,

where the com-

ponents of ãi ∈ R80 (i ∈ 1, 3) are generated i.i.d. from
the standard Gaussian distribution, and those of ϵi ∈ R80

(i ∈ 1, 30) are generated i.i.d. from N(0, σ2
ϵ ) with

σϵ > 0. The coefficient vector x⋄ ∈ Rn is set as
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x⋄,i :=


3, if i ∈ G1,

2, if i ∈ G2,

1.5, if i ∈ G3,

0, if i ∈ G4.
B. The difference from dataset A is the following:

G1 := {1, 4, 7, 10, 13}, G2 := {2, 5, 8, 11, 14}, G3 :=
{3, 6, 9, 12, 15}.

For this task, we consider the proximal gradient method to
solve the least square loss regularized by Υλ1,λ2

given in (17)
as follows:

xk+1 := Rλ1,λ2
(xk − µA⊤(Axk − y)), k ∈ N, (24)

where µ > 0 is a step size. The algorithm is initialized to
x0 := 0n. We compare the proposed method with the methods
to solve lasso [1], the MC penalty [15], [16], the fused lasso
[6], and OSCAR [8]. The hyperparameter for the MC penalty
is chosen to guarantee the convexity of the cost function. All
the hyperparameters are tuned to attain the best performance.
The evaluation metric is the system mismatch defined by ∥x̂−
x⋄∥22/∥x⋄∥22, where x̂ is an estimate of x⋄. The results are
averaged over 300 trials.

Figure 4 shows the system mismatch across σϵ under dataset
A and B. The parameter σϵ controls the correlation of the col-
umn vectors of A: a large σϵ corresponds to small correlations
among ai’s, and vice versa. It can be seen that the proposed
method outperforms the other methods in a wide range.
Especially when the correlation is high, the proposed method
successfully reduces the estimation bias, unlike OSCAR. We
finally mention that the proposed method achieves the best
overall performance for both datasets, while the performance
of the fussed lasso degrades for dataset B significantly as it
assumes the active coefficients to be consecutive.

V. CONCLUSION

We investigated the LME-OSCAR regularizer, which is de-
fined by a limit of the Moreau-enhanced OSCAR regularizer.
It turned out that the LME-OSCAR regularizer induces sparse
or grouped solutions effectively while reducing the estimation
bias. As a result, it was clarified that the Moreau-enhanced
OSCAR regularizer can be seen as an approximation of a
desirable discrete measure. An efficient way of computing
the proximity operator of the proposed discrete measure was
derived by using the dynamic programming. The bias-reducing
effect of the proposed method for feature grouping was
demonstrated by simulations.
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[3] M. Dettling and P. Bühlmann, “Finding predictive gene groups from
microarray data,” J. Multivariate Anal., vol. 90, no. 1, pp. 106–131,
2004.

[4] U. Oswal, C. Cox, M. Lambon-Ralph, T. Rogers, and R. Nowak, “Rep-
resentational similarity learning with application to brain networks,” in
Proc. Int. Conf. Mach. Learn. PMLR, 2016, pp. 1041–1049.

[5] X. Shen and H.-C. Huang, “Grouping pursuit through a regularization
solution surface,” J. Amer. Stat. Assoc., vol. 105, no. 490, pp. 727–739,
2010.

[6] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity
and smoothness via the fused lasso,” J. Roy. Stat. Soc. Ser. B, vol. 67,
no. 1, pp. 91–108, 2005.

10−2 10−1 100

σε

−30

−20

−10

0

sy
st

em
m

is
m

at
ch

[d
B

]

lasso

MC

fused lasso

OSCAR

proposed

(a)

10−2 10−1 100

σε

−30

−20

−10

0

sy
st

em
m

is
m

at
ch

[d
B

]

lasso

MC

fused lasso

OSCAR

proposed

(b)

Fig. 4: System mismatch across σϵ under (a) dataset A and
(b) dataset B.

[7] Y. She, “Sparse regression with exact clustering,” Electron. J. Stat.,
vol. 4, pp. 1055–1096, 2010.

[8] H. D. Bondell and B. J. Reich, “Simultaneous regression shrinkage,
variable selection, and supervised clustering of predictors with OSCAR,”
Biometrics, vol. 64, no. 1, pp. 115–123, 2008.

[9] L. W. Zhong and J. T. Kwok, “Efficient sparse modeling with automatic
feature grouping,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no.
9, pp. 1436–1447, 2012.

[10] B. Vinzamuri, K. K. Padthe, and C. K. Reddy, “Feature grouping using
weighted ℓ1 norm for high-dimensional data,” in Proc. Int. Conf. Data
Mining. IEEE, 2016, pp. 1233–1238.

[11] J. Abe, M. Yamagishi, and I. Yamada, “Linearly involved generalized
Moreau enhanced models and their proximal splitting algorithm under
overall convexity condition,” Inverse Problems, vol. 36, no. 3, pp. 1–36,
Feb. 2020.

[12] M. Yukawa, H. Kaneko, K. Suzuki, and I. Yamada, “Linearly-involved
Moreau-enhanced-over-subspace model: Debiased sparse modeling and
stable outlier-robust regression,” IEEE Trans. Signal Process., vol. 71,
pp. 1232–1247, 2023.

[13] A. Lanza, S. Morigi, I. W. Selesnick, and F. Sgallari, “Sparsity-inducing
nonconvex nonseparable regularization for convex image processing,”
SIAM J. Imag. Sci., vol. 12, no. 2, pp. 1099–1134, 2019.

[14] A. Parekh and I. W. Selesnick, “Enhanced low-rank matrix approxima-
tion,” IEEE Signal Process. Lett., vol. 23, no. 4, pp. 493–497, 2016.

[15] C. H. Zhang, “Nearly unbiased variable selection under minimax
concave penalty,” Ann. Statist., vol. 38, no. 2, pp. 894–942, Apr. 2010.

[16] I. Selesnick, “Sparse regularization via convex analysis,” IEEE
Trans. Signal Process., vol. 65, no. 17, pp. 4481–4494, Sep. 2017.

[17] K. Suzuki and M. Yukawa, “External division of two proximity
operators: An application to signal recovery with structured sparsity,”
in Proc. Int. Conf. Acoust., Speech, Signal Process. IEEE, 2024, pp.
9471–9475.
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