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Abstract—The paper focuses on the reconstruction of a mul-
tivariate signal from its noisy correlation vectors, a problem
appearing in phase retrieval and blind channel identification.
In the noiseless case, the signals can be retrieved from greatest
common divisors of the polynomials associated to observed
vectors. For the noisy case, by exploiting the properties of
Sylvester matrices, we propose a new reconstruction approach
that exploits all the available data and preserves matrix structure
in the associated low-rank approximation problem. By doing so,
we achieve an improvement of the reconstruction performance
with respect to existing methods.

Index Terms—Signals estimation, Structured Low-Rank Ap-
proximation, Approximate GCD, Sylvester matrices.

I. INTRODUCTION

This paper deals with the estimation of signals from their
auto-correlation and cross-correlation functions. This problem
arises notably in blind channel identification [1], [2] and
phase retrieval [3], [4]. The problem can be mathematically
formulated as follows. Consider R discrete signals xi ∈ CNi ,
i = 1, . . . , R and let γij = xi ⋆ xj ∈ CNi+Nj−1 denote
the vector encoding the auto- or cross-correlation between the
(i, j)-th signal pair. The estimation problem thus consist in

find {xi}Ri=1 given {γij = xi ⋆ xj}Ri,j=1 . (1)

For R = 1, the problem amounts at the classical spectral
factorization problem [5] of univariate polynomials. The case
R = 2 has been studied in several publications [6]–[8]
while the general case R ≥ 2 can be interpreted as a rank-
one factorization problem of a matrix polynomial built from
correlation functions [9]. The study of theoretical properties of
the problem (1) relies on a classical polynomial reformulation
thanks to z-transform-like expansions, which is particularly
useful for studying uniqueness of solutions. It is well known
(see e.g., [10]) that the case R = 1 does not admit a unique
solution; uniqueness can be enforced through additional con-
straints (such as minimum phase) – see [4] for a review of
such strategies. On the other hand, the case R ≥ 2 enjoys
strong uniqueness properties for generic signals [9]. Moreover,
it can be shown that the problem admits a unique algebraic
solution as the greatest common divisor (GCD) of correlation
polynomials: this feature has been exploited recently [7] to
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devise an efficient algebraic reconstruction strategy for the
polarimetric phase retrieval problem.

Existing GCD-based reconstruction strategies [6], [7] for
(1) suffer from poor performance in noisy scenarios. This
work addresses this limitation by studying novel structured
low-rank approximation (SLRA) approaches for the problem
(1). We propose several Sylvester-like matrix structures to take
into account the specificities of the correlation measurements
in (1). In addition, the proposed approach leverages recent
advances in approximate GCD computations [11], [12], by
efficiently reformulating the SLRA optimization problem as
an ODE system. Numerical experiments demonstrate that
taking into account the structure of (1) together with dedicated
SLRA algorithms yields significant improved reconstruction
performance in noisy scenarios, while maintaining reasonable
computational burden.

Paper organization: Section II reviews the classic poly-
nomial representation of (1) and the properties of Sylvester
matrices. Section III introduces the SLRA problem, relevant
Sylvester-like matrix structures, and the ODE-based gradient
system algorithm. Numerical experiments are presented in
Section IV and Section V gathers concluding remarks.

II. PRELIMINARIES

To simplify the presentation, we assume from now on R = 2
and N1 = N2 = N , which is sufficient to demonstrate the
rationale of the approach. The case N1 ̸= N2 can be recovered
by careful adaption of dimensions in subsequent definitions. In
addition, the proposed tools can be extended to R > 2 signals
by using techniques presented in [13].

A. Polynomial representation

Consider two signals x1,x2 ∈ CN and define their
polynomial representation X1, X2 ∈ C≤N−1[z] such that
Xi(z) =

∑N−1
k=0 xi[k]z

k for i = 1, 2. In addition, let us define
the polynomials with reversed and conjugated coefficients
X̃i(z) =

∑N−1
k=0 x∗

i [N − 1 − k]zk where .∗ denotes the
complex conjugate operation. It can be observed that X̃i(z) =
zN−1X∗

i ((z
∗)−1). Note that these polynomial representations

are much alike to the standard z-transform of discrete signals,
except for the use of positive powers of z – a standard con-
vention in the Fourier phase retrieval literature [4], [6], [10].
Similarly, for any (i, j) pair, one can define the correlation
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polynomial Γij(z) =
∑2N−2

k=0 γij [k − N + 1]zk. Standard
calculations (see e.g., [4]) show that Γij(z) = Xi(z)X̃j(z).
Therefore, the problem (1) is equivalent to the following
polynomial factorization problem

find X1(z), X2(z) given {Γij(z) = Xi(z)X̃j(z)}2i,j=1 . (2)

The formulation (2) allows for a complete characterization of
solutions to the original problem (1) [9]. In particular, when
polynomials X1(z), X2(z) are co-prime (equivalently, when
all {Γij(z)} are co-prime) then the problem admits a unique
solution, which can be expressed using the greatest common
divisor of correlation polynomials, as stated below.

Proposition 1 (GCD-based recovery [7]). Let X1, X2 ∈
C≤N−1[z] such that gcd(X1, X2) = 1. Then X1(z) and X2(z)
can be uniquely recovered from {Γij(z)}2i,j=1 as

X1(z) = c1 gcd(Γ11,Γ12) and X2 = c2 gcd(Γ21,Γ22) (3)

where c1, c2 ∈ C can be determined explicitly (up to global
phase, i.e., a common scalar complex factor of modulus 1)
from correlation polynomials.

Proposition 1 has two key consequences. First, since for
generic polynomials gcd(X1, X2) = 1 almost surely, this
means that the recovery problem (2) (and thus (1) as well)
admits a unique solution of the form (3). Second, it suggests an
algebraic reconstruction strategy based on numerical methods
for computing the (approximate) greatest common divisor
(GCD) of polynomials [14]. These rely on Sylvester-like
matrices and their kernel properties, which are reviewed next.

B. Sylvester matrices and their (right) kernel

Low-rank approximation of Sylvester (or Sylvester-like
matrices) matrices [15]–[17] is a common approach to find
approximate greatest common divisors in numerical linear al-
gebra. First, for a polynomial P (z) ∈ C≤L[z] with coefficients
p ∈ CL+1, we define the multiplication matrix as

MK(P ) =


p0
...

. . .
pL p0

. . .
...
pL

 ∈ C(L+K+1)×(K+1),

which is a matrix representation of multiplication of P (z)
by any polynomial of degree ≤ K. For two polynomials
P (z), Q(z) ∈ C≤L[z] and a number D, let

SD(P,Q) =
[
ML−D(Q) −ML−D(P )

]
(4)

denote the modified1 Sylvester (subresultant) matrix. Then the
following proposition is known.

Proposition 2 (Right kernel property [18], simplified). Con-
sider two polynomials P,Q ∈ C≤L[z] such that gcd(P,Q) =

1The definition used here differs from the standard one [14] by the ordering
and changing sign of the blocks. While it does not affect rank properties, it
simplifies the reconstruction procedure in Algorithm 1.

Algorithm 1 Right kernel Sylvester
Input: Sylvester subresultant matrix S with 2N columns,
an estimate Ĉ of ∥[x̂1, x̂2]∥2
1. Take v = v2N ∈ C2N to be the 2N -th right singular
vector of S (corresponding to the 2N -th singular value)
2. Partition v as v = [v1,v2].
3. Set x̂1 = Ĉv1 and x̂2 = Ĉv2

Output: Estimates x̂1 and x̂2

H ∈ C≤D[z] and let P (z) = H(z)U(z), Q(z) = H(z)V (z),
where U, V ∈ C≤L−D[z] are quotient polynomials. Then the
right kernel of SD(P,Q) has dimension one and is spanned by
the concatenation of the coefficients of quotient polynomials:

SD(P,Q)

[
u
v

]
= 0.

Propositions 1 and 2 lead to a practical reconstruction
strategy for the problem (2), called right kernel Sylvester
approach, summarized in Algorithm 1. It enables the recovery
of polynomials X1(z) and X2(z) up to a global phase factor
from an input Sylvester matrix with 2N columns constructed
from correlation polynomials {Γij(z)}. A simple choice, used
e.g., in [7], is to take P (z) = Γ11(z) and Q(z) = Γ21(z) in
(4) leading to

Spartial := SN−1(Γ11,Γ21) ∈ C(3N−2)×2N , (5)

where the subscript refers to the partial use of correlation
polynomials in (2). Note that a typical estimate of the norm
in Algorithm 1 is Ĉ =

√
γ2
11[0] + γ2

22[0]. While being very
computationally efficient, i.e., it only requires the computation
of one SVD, this approach exhibits poor reconstruction perfor-
mance in noisy scenarios [7], as the Sylvester matrix structure
is not preserved by the low-rank SVD approximation. The next
section precisely address this issue through several structured
low-rank approximation algorithms.

III. PROPOSED APPROACH

In practical settings, one has only access to noisy mea-
surements of correlations polynomials {Γij(z)} in (2). In this
paper, we assume that the (i, j)-th correlation polynomial is
given by

Γij(z) = Γ0
ij(z) + αNij(z), (6)

where Γ0
ij(z) = Xi(z)X̃j(z) is the noiseless correlation

polynomial and where Nij ∈ C≤2N−2[z] is a noise polyno-
mial whose coefficients are i.i.d. complex circular Gaussian
variables. Finally, the parameter α ≥ 0 controls the relative
noise contribution in (6) and can be interpreted as the standard
deviation of the noise polynomial coefficients.

A. Improved Sylvester-like matrix structure

As explained above, any method exploiting the right-kernel
properties of Sylvester matrices (such as Algorithm 1) requires
matrix structures such that Proposition 2 (or variations) holds.
A standard example is Spartial (see Eq. (5)); another straight-
forward example would be S′

partial = SN−1(Γ12,Γ22), which
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uses the complementary pair of correlation polynomials and
encodes the same quotient polynomials as Spartial.

In this paper, we propose to fully exploit all the polynomials
in {Γij(z)} by considering the block Sylvester matrix

Sfull =

[
MN−1(Γ21) −MN−1(Γ11)
MN−1(Γ22) −MN−1(Γ12)

]
∈ C(6N−4)×2N . (7)

The motivation of this choice is that, despite the two pairs
of polynomials having different GCDs (see Proposition 1),
the two block rows of Sfull share the same one dimensional
right kernel (that is, the polynomials have the same cofactors
X1, X2), so does the overall structured matrix in (7). By
encoding all available information in a single matrix Sfull, one
can expect improved robustness to noise compared to partial
structures as in (5).

B. Structured low-rank approximation

The issue with using just the plain SVD in Algorithm 1 is
that it does not preserve the (Sylvester) matrix structure in the
low-rank approximation. This is known to be suboptimal in
signal reconstruction problems and approximate polynomials
GCD computations [11], [13]. To circumvent this issue, we
propose to use the powerful structured low-rank approximation
(SLRA) [19] approach, which we detail below.

Let S ⊂ Cm×n be a set (affine subspace) of matrices of
some fixed structure (e.g., Sylvester, Hankel. etc). We will
refer to S as the matrix structure. Then the SLRA problem
(with rank reduction by 1 [13], [19]) is to find a closest rank-
deficient structured matrix to a given one.

Problem (SLRA with rank reduction by 1). Given a structured
matrix S ∈ S, compute

min
Ŝ∈S
∥S− Ŝ∥F , s.t. σmin(Ŝ) = 0, (8)

where σmin(·) denotes the smallest singular value.

Rank reduction by one suits well our needs since both the
matrices Spartial and Sfull are tall, and have one dimensional
right kernel under assumptions of Proposition 2.

As we discussed before, there are several matrix structures
that encode the polynomial factorization property. We consider
the following three matrix structures:

1) Spartial: the ordinary Sylvester structure (5);
2) Sfull: the block Sylvester structure in (7), that exploits

all elements of {Γij(z)};
3) Scorr

full : the block Sylvester structure from (7), with a
symmetry imposed on the elements of the matrix, which
reflects the symmetry possessed by the coefficients of
the correlation polynomials {Γij(z)} (see (2)):

Scorr
full = {Sfull : Γ̃ij(z) = Γji(z),∀ i, j}.

The matrix structure Scorr
full is particularly interesting as it

is the smallest matrix structure of the three that contains
autocorrelation matrix polynomials. Note that Scorr

full is an R-
linear subspace, unlike Spartial and Sfull which are C-linear
subspaces; this fact has some repercussions for the numerical
solution of SLRA (see the next subsection).

C. An ODE-based method for block Sylvester SLRA

Many methods exist for SLRA with affine matrix structure
(see [11, Section 1.2] for a summary). In this paper, we
employ the ODE-based methodology proposed recently [11],
which consists in reformulating the SLRA problem as matrix
ODE. The advantages of such a methodology are twofold: (a)
it already proved to be efficient for Sylvester-like structures
[20], [21], complex polynomials [11, Section 5.2] and block
structures [22]; and (b) it is easy to implement since we only
need to change the projection PS(·) on the matrix structure.
We briefly recall here the main ingredients of the ODE-
based algorithm for the SLRA problem (8) and we refer the
interested reader to [11], [12] for proofs or other details.

Let S be a full rank structured matrix. This is the case,
e.g., when building Spartial or Sfull from noisy correlation
polynomials (6). Considering the SLRA problem (8), the basic
idea of the ODE-based method [11] is to search for a solution
Ŝ = S + ϵE which is a linear perturbation of the input
matrix S. The perturbation ϵE is such that E is a normalized
(with respect to the Frobenius norm) structured matrix that
minimizes the smallest singular value σmin(Ŝ) over the ball
of perturbation matrices ϵE of norm ϵ.

Starting from an initial guess Ŝ0 = S+ ϵ0E0, this splitting
allows for updating ϵ and E iteratively on two levels:

1) at an inner level, the norm ϵ is fixed, and we look for the
structured matrix E(ϵ) that minimizes σmin(S+ ϵE(ϵ));

2) at an outer level, if the computed Ŝ does not satisfy (at
least approximately) σmin(Ŝ) ≈ 0, we update ϵ.

At the inner level, we look for a zero of the derivative of
σmin. By using results about derivatives of singular values, the
computation of E = E(ϵ) can be reformulated [11] as finding
stationary points of the ODE:

Ė = −PS(uv
H) + ⟨E,PS(uv

H)⟩E. (9)

where u and v are the singular vectors associated with σmin,
·H is the standard conjugate transpose operator and ⟨·, ·⟩
denotes the usual Frobenius inner product for matrices. At the
outer level, we look for ϵ̄ that annihilates σmin(S+ ϵE). This
is computed by the Newton method coupled with a bisection
step, to look for possible better solutions once we find an
admissible one. We summarize the procedure in Algorithm 2,
where computational steps are explained in [11], [12].

The orthogonal projections on Spartial and Sfull are standard
and calculated by averaging along diagonals and putting
elements to zero. The structure Scorr

full is particular due to its
R-linear structure. However, the projection on Scorr

full can be
still simply computed as follows:

1) compute the orthogonal projection of a matrix X on Sfull,
and let γ̂ij , i, j = 1, 2 be the four estimated polynomials
coefficients for the corresponding blocks;

2) symmetrize polynomials’ coefficients as:

γ̂ij ←
1

2
(γ̂ij + flip(γ̂∗

ji))

where the flip(·) operator reverses the order of polyno-
mial coefficients.
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Algorithm 2 ODE-based algorithm for the SLRA problem (8)
Input: Sylvester matrix S with 2N columns and cor-
responding structure S, bounds for perturbation norm
[ϵmin, ϵmax], maximum iteration number kmax, tolerance T .
Estimate the starting values ϵ0,E0;
Set u, σ,v as the smallest singular triplet of Ŝ = S+ ϵ0E0;
for k = 1 : kmax do

1. Compute ϵk by a Newton-bisection method:
if σ > T then
ϵk = ϵk−1 +

σ
∥PS(uv∗⊤)∥F

,
else

Set ϵmax = ϵk and ϵk = 0.5ϵmin + 0.5ϵmax.
end if
2. Compute the perturbation E corresponding to
σmin(S+ ϵkE) by integrating the ODE (9)
3. Compute the smallest singular triplet (u, σ,v) from
Ŝ = S+ ϵkE
if σ < T then

stop
end if

end for
Apply Algorithm 1 to Ŝ with Ĉ =

√
γ̂2
11[0] + γ̂2

22[0]
Output: Estimates x̂1 and x̂2

IV. NUMERICAL EXPERIMENTS

This section deals with the evaluation of the numerical
performances of the proposed Sylvester-like matrix structures
and associated algorithms to solve problem (1). To illustrate
the respective role of each matrix structure and each algorithm,
we consider multiple combinations. In total, we may consider
three different matrix structures Spartial,Sfull and Scorr

full of in-
creasing complexity. Algorithm 1 can be used with matrices
in Spartial and Sfull; corresponding strategies will be labeled as
rker(Spartial) and rker(Sfull). Algorithm 2 can itself be used
with any of the three matrix structures considered in this
paper; corresponding strategies are therefore labeled as Sylv-
ODE(S), where S = Spartial,Sfull or Scorr

full is the considered
structure. For comparison, we also implement the classical
Cadzow’s algorithm [23] using the full correlation structure
Scorr

full , where the final step of the algorithm calls the right kernel
method (Algorithm 1) on the estimated Sylvester-like matrix.

All numerical experiments are performed on a 2024 Apple
M4 MacBookPro with 24GB RAM using Matlab 2024b. Due
to the inherent global phase ambiguity in (1), reconstruction
error is defined as follows. Letting x̂ = [x̂1, x̂2] ∈ C2N

be a estimation of the (vectorized) ground truth signal x =
[x1,x2] ∈ C2N , the relative estimation error r(x̂) is defined
as

r(x̂) = min
Φ∈[0,2π)

∥x̂eıΦ − x∥22
∥x∥22

(10)

which is the standard metric in, e.g., phase retrieval [3], [4].
Figure 1 depicts the average reconstruction error as a

function of the noise standard deviation α for the observation
model (6). The same ground-truth signals x1,x2 ∈ C32
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Fig. 1. Average error comparison (in logarithmic scale) among different com-
putational method for the estimation of a signal from correlation polynomials
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Fig. 2. Average computational times comparison (in logarithmic scale) for
the problem of estimating signals of increasing length.

(generated as i.i.d. complex circular Gaussian vectors) were
used in the 50 independent Monte-Carlo runs for each value
of α ranging logarithmically from 10−6 to 10−1. First observe
that the use of the structure Sfull or Scorr

full systematically leads to
an improvement in the estimation error with respect to Spartial:
this happens both by comparing rker(Spartial) and rker(Sfull) as
well as by comparing Sylv-ODE(Spartial) with Sylv-ODE(Sfull)
and Sylv-ODE(Scorr

full ). The second observation is about the
comparison between the full rank and the rank deficient matri-
ces. Indeed, for all noise levels all approximated matrices yield
a smaller error, independently on the considered Sylvester
structure with 2 or 4 blocks. Thus the SLRA approach for
the signal estimation problem is beneficial (at least for the
considered algorithms), from the point of view of the error on
the computed solution.

Figure 2 displays computational timings in the case α =
10−3 for increasing size of signals from N = 4 to N = 64.
Computed times were averaged over 10 independent recon-
structions. The complexity of all the proposed methods is
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dominated by the computation of the (full) SVD, thus it can be
estimated from the number of SVD factorizations performed.
Methods rker(Spartial) and rker(Sfull) only need one SVD for
the direct error estimation. Cadzow’s algorithm uses one SVD
per iteration, while the ODE-based methods integrate one ODE
(9) at each iteration, and such iterative integration needs a
SVD per iteration (see [11, Algorithm 1]). The interesting
observation (that is only a numerical evidence, up to now)
is the fact that Sylv-ODE(Scorr

full ) runs much faster than Sylv-
ODE(Sfull).

Overall, Cadzow’s iteration with the projection on Scorr
full

looks as a good trade-off between the computational complex-
ity and the reconstruction error. Note that its performance can
probably be further improved by exploiting variations of this
classical algorithm, such as stochastic optimization techniques
[24].

V. CONCLUDING REMARKS

In this paper, we studied the recovery of two signals from
their auto- and cross-correlation vectors, which is an important
problem arising in blind channel identification and phase
retrieval. This problem is notoriously difficult due to its non-
convex nature. The originality of the proposed approach lies in
exploiting a polynomial representation of the original problem,
enabling solutions through approximate GCD computations.
To address limitations of current methods – notably their
poor robustness to noise – we proposed a structured low-
rank approximation (SLRA) approach using Sylvester-like
matrices. By leveraging all available correlation polynomials
and preserving the matrix structure, we demonstrated signif-
icant improvements in reconstruction performance. Numeri-
cal experiments confirmed the effectiveness of the proposed
approach, particularly when using the full block Sylvester
structure with correlation constraints. Future work will focus
on 1) improving the computational performances of ODE-
based algorithms and 2) extending these algebraic GCD-based
approaches to multidimensional signals (e.g., images) or to
other measurement settings such as spectrogram-like measure-
ments [25] in audio signal processing [26] or ptychographic
imaging [27].
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