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Abstract—The iterative alternating minimization approach
has gained increasing attention for the development of sensing
matrix design algorithms. However, relying solely on the mutual
coherence index as a single evaluation metric does not guarantee
optimal sensing matrix performance. To enhance Compressed
Sensing (CS) recovery accuracy, it is crucial to simultaneously
minimize multiple coherence metrics (µmx, µave, and µall),
particularly by leveraging Equiangular Tight Frame (ETF)
properties. In this paper, we propose a novel iterative alternating
minimization method for designing an optimized sensing matrix
that reduces mutual coherence values. Our approach incorpo-
rates a simple yet effective shrinkage function, which enables the
approximation of an ideal ETF structure during the updating
phase while maintaining computational efficiency. Experimental
results demonstrate that the sensing matrix designed using the
proposed algorithm achieves superior performance in terms of
both signal reconstruction accuracy and coherence reduction,
outperforming existing methods.

Index Terms—Compressed sensing framework, Equiangular
Tight Frame (ETF),orthogonal matching pursuit (OMP), Greedy
algorithms, iterative alternating minimization approach.

I. INTRODUCTION

In recent years, compressed sensing (CS) [1], [2] has
emerged as a powerful mathematical framework for effi-
ciently acquiring and processing signals while overcoming
the limitations of the Shannon-Nyquist sampling theorem. CS
enables the recovery of an unknown signal x ∈ RN×1 from
a few measurements y ∈ RM×1 by exploiting its sparse
representation:

y = Φx = ΦΨ︸︷︷︸
D

s, (1)

where s ∈ RL×1 is a k-sparse representation of x in a given
sparsifying dictionary Ψ ∈ RN×L, while Φ ∈ RM×N is the
sensing matrix, and D is equivalent matrix. Recovering the
k nonzero components of s requires solving the following
optimization problem:

arg min ‖s‖0 s.t y = ΦΨs. (2)

However, this `0-norm minimization is NP-hard and compu-
tationally intractable in general [3]. To circumvent this issue,
CS frameworks commonly employ `1-norm minimization and
greedy algorithms, which offer computationally feasible sparse
reconstructions via convex relaxation techniques [4], [5]. The
performance of CS reconstruction algorithms heavily depends
on the quality of the sensing matrix Φ, which must satisfy key
properties, such as spark, Restricted Isometry Property (RIP),
and mutual coherence [6]. However, using the spark and RIP
are not tractable in practice to design the sensing matrix [7].
Furthermore, applying the mutual coherence index alone in the
designing of the sensing matrix does not ensure a highly CS-
based systems performance. Therefore, the optimal sensing
matrix should be granting an orthogonal equivalent matrix
version in CS theory whatever the known dictionary [8]. To
benefit the mutual coherence as criteria in practice, the robust
optimal sensing matrix must reduce the correlation constant
between any distinct pair of the corresponding Gram matrix
G ( G = ΨHΦHΦΨ) by updating its version according to the
equiangular tight frame (ETF) properties [5]–[9]. In addition,
the optimal sensing matrix can be obtained through an iterative
alternating approach, incorporating ETF properties to solve
the Frobenius norm minimization problem for the difference
between the Gram matrix and the target Gram matrix Gt :

arg min
Φ,Gt∈Hµwelch

∥∥Gt −ΨHΦHΦΨ
∥∥2
F

(3)

where Hµwelch represents a convex set containing ideal ETF
elements [10]

Hµwelch =

{
Gt ∈ RL×L : Gt = GH

t ,

diag(Gt) = 1,max
i6=j
|Gt(i, j)| ≤ µwelch

}
(4)

whilst µwelch
4
=
√

L−M
M(L−1) defining the Welch bound. The

optimization problem in (3) presents two primary challenges:
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1) Updating Gt to closely approximate an ETF structure,
2) Deriving the optimal sensing matrix Φ that minimizes
mutual coherence.
In [5], authors propose a minimization solution using a
shrinkage method to iteratively update Gt , reducing the t-
averaged mutual coherence and optimizing Φ. However, this
alternating minimization method incurs a high computational
cost, and the thresholding approach in the update phase fails to
yield ideal ETF elements due to persistently high off-diagonal
values in Gt . This negatively impacts both the maximum
and average mutual coherence (µmx and µave), ultimately
degrading the performance of reconstruction algorithms. An
alternative iterative method introduced in [9] aims to design
an optimal sensing matrix using a power method to obtain the
largest absolute eigenvalue instead of performing full eigen-
value decomposition. However, this approach fails in cases
where eigenvalues are negative or when dealing with complex-
valued systems. To address computational complexity issues
and improve recovery performance, [7] proposes a new thresh-
olding mechanism within the shrinkage method to refine Gt

and reduce mutual coherence values. Nevertheless, a major
limitation of this approach is the absence of a closed-form
mathematical expression for determining an optimal threshold
across different CS applications. In this paper, we introduce an
iterative alternating minimization algorithm for sensing matrix
design. Our method leverages a classical shrinkage approach
with a simple yet effective thresholding mechanism to update
Gt according to ETF properties, resulting in improved sensing
matrix quality and superior signal recovery performance, as
confirmed by our simulation results.

II. CS-BASED THEORY BACKGROUND

This section introduces fundamental concepts related to
CS, including ETF properties and mutual coherence metrics.
The maximum mutual coherence of any matrix D ∈ RM×N
is defined as the largest absolute normalized inner product
between any two distinct columns:

µmx(D) = max
i 6=j,1≤i,i≤L

{ ∣∣dTi dj∣∣
‖di‖22 . ‖dj‖

2
2

}
(5)

This metric quantifies the highest degree of correlation be-
tween different columns of D. Therefore, the design of the
sensing matrix based on µmx cannot guarantee a better accu-
racy recovery result for any recovery algorithms. To provide a
more comprehensive evaluation of the sensing matrix quality,
additional coherence metrics are defined based on the Gram
matrix G = DHD such as the maximum, averaged, and
global mutual coherence values (µmx, µave and µall) of the
off-diagonal elements of G as expressed in the following
definitions

µmx = max
i 6=j
|g̃ij | (6)

µave =

∑
i 6=j (|g̃ij ≥ t|) |g̃ij |∑

i6=j g̃ij ≥ t
(7)

µall =
∑
i 6=j

g̃2ij (8)

where t is the threshold value proposed by Elad [5] to reduce
the mutual coherence where µave ≥ t. Whereas, g̃ij = d̃Ti d̃j
is the entry at the position of row i and column j in G̃
(G̃ = D̃HD̃), and D̃ is column-normalized version of D.
The correlation between column pairs should ideally reach
the Welch bound, which represents the theoretical limit of
incoherence and ensures high recovery performance. To reduce
the different mutual coherence values simultaneously to the
lower bound, the ETF properties must be exploited in the
design of the sensing matrix with respect to the known
dictionary. Also, approximating ETF is the main phase to solve
the optimization problem in (3). Consequently, we briefly
highlight the concept and principal characteristics of a frame
in the design of the optimal sensing matrix as follows :
The matrix D = [d1, . . . ,dn] ∈ Rm×n is called a frame with
m � n, if there exist two constants 0 < α ≤ β ≤ +∞ such
that

α ‖v‖2 ≤
∥∥DTv

∥∥
2
≤ β ‖v‖2 ,∀v ∈ Rm (9)

where α and β are the lower and the upper bound of frames
respectively [11]. If α = β in (9), the frame D is called α-
tight frame, and when α = β = 1, is called a Parseval frame.
Similarly, the overcomplete dictionary D is called ETF, if the
following conditions are satisfied
• Each column has a unit norm : ‖di‖2 for i = 1, . . . , n.
• The columns are equiangular. For some nonnegative δ,

we get |〈didj〉| = δ when i 6= j, i, j = 1, . . . , n.
• The columns form a tight frame. That is, DDH =(

n
m

)
Im, where Im is identity matrix of size m×m.

III. THE PROPOSED SENSING MATRIX DESIGNING

In this work, we propose an iterative alternating minimiza-
tion approach that combines a classical shrinkage method for
updating Gt and an alternating projection technique to de-
sign an optimal sensing matrix that simultaneously minimizes
mutual coherence values.

Theorem 1: (see [8]): Let Ψ = UΨ [ΣΨ 0]V H
Ψ be the

singular value decomposition of Ψ, where UΨ ∈ Rm×m and
VΨ ∈ Rn×n are unitary matrices. If rank(Ψ) = m < n,
then ΣΨ contains m singular values with σ1 ≥ σ2 . . . ≥ σm.
Suppose that G̃t ∈ Hµwelch , and if Θ = V H

Ψ G̃tVΨ is
positive semidefinite matrix, then Θ = XΘAΘXH

Θ is the
eigendecomposition of Θ. The optimal Φopt can be find by
the following solution to solve the problem in (3)

Φopt = Λ
1
2

ΘPH
[
Σ−1

Ψ 0
]H

UH
Ψ (10)

where ΛΘ ∈ Rm×m is diagonal matrix that contain m
maximum eigenvalues of Θ, whereas P ∈ Rn×m denotes
the first m columns of XΘ corresponding to the top m
eigenvalues. For the proof of Theorem 1, see the appendix
in [8].
Our goal is to iteratively optimize Φ while refining Gt via
classical shrinkage. Algorithm 1 details the procedure. As
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summarized in Algorithm 1, we initialize Φ to a random
matrix where Ψ is introduced as a given sparsifying dictionary
to obtain the equivalent dictionary D = ΦΨ. Afterward, we
normalize the columns in D during each iteration to produce
D̃ that is used in the next step to get the gram matrix G̃. As
the optimal sensing design is only achieved through the ETF
properties, we must update G to be close to the corresponding
ETF designed by projecting the Gram matrix elements g̃ij on
Hµwelch to have unit diagonal elements and reduce the off-
diagonals. For this purpose, we choose Welch bound as the
known threshold to get the updated version of a G̃t as

∀ i, j i 6= j : G̃t(i, j) =

{
g̃ij abs(g̃ij) < µwelch

sign(g̃ij) otherwise
(11)

Algorithm 1 Iterative Alternating Minimization for Sensing
Matrix Design
Input: sparsifying basis Ψ with SVD decomposition Ψ =
UΨ [ΣΨ 0]V H

Ψ ,
Welch bound µwelch, number of iterations Iter
Output: Optimized sensing matrix Φ̂
Initialization: Set Φ as a random matrix.
for k to Iter do

1) Φ(k) ← Φ
2) Compute the equivalent matrix D = ΦkΨ
3) Compute the Gram matrix G̃ = D̃HD̃ (D̃ is

normalization version of D)
4) Update G̃ to obtain G̃t using (11)
5) Compute the positive semidefinite matrix Θ =

V H
Ψ G̃tVΨ

6) Apply eigenvalue decomposition to obtain Θ =
XΘAΘXH

Θ

• Find ΛΘ ∈ Rm×m including m maximum eigenvalues
of AΘ

• Find P ∈ Rn×m containing the first columns of XΘ

7) Update Φ(k+1) using (10)
end for

IV. SIMULATION RESULTS

In this section, we provide a set of simulations to elucidate
the performance of the proposed method and compare it with
other sensing matrix designs, such as Elad’s method [5] and
Renjie’s method [7]. During the carried out simulations,, the
parameter t for Elad’s method is fixed to 0.2 with three
different values of down-scaling factor γ: γ1 = 0.25, γ2 =
0.55, γ3 = 0.95, whearas c is set to 0.01 for Renjie’s method
[7]. In Fig. 1, mutual coherence values evolution as a function
of outer iteration numbers are presented, where the given
dictionary matrix Ψ ∈ R80×120 is a random Gaussian matrix
and Φ ∈ R28×80 is generated randomly as the initial matrix
in the beginning of each design method. As shown in Fig.1
(a), (b), and (c), the mutual coherence values obtained by the
proposed method are reached to the lower bound values with
a simple choice of the threshold in the updating phase, which
means that the proposed method has a better sensing matrix

design in terms of the decreasing of the mutual coherence
values (µmx, µave and µall) simultaneously.
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Fig. 1. Evolution results of: (a) the t-averaged mutual coherence µave, (b)
the maximal coherence µmx, and (c) the global mutual coherence µall, all
versus iteration number for an 28 × 80 random matrix Φ as initial matrix
and an 80× 120 dictionary matrix Ψ with Gaussian distribution.

Fig. 2 illustrates the histogram of the absolute off-diagonal
entries of the optimized Gram matrix where we can see that
the histogram obtained by the proposed method has a shift
towards the left (or origin) with small values of correlation
constant between pairwise of columns in the updated Gt

matrix compared to the other design method.
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Fig. 2. Histogram of the absolute value of the off-diagonal entries of the
updated Gt matrix.

As the measurement numbers have a relationship with the
Welch bound, we evaluate the evolution of mutual coherence
indexes by varying the measurement numbers of the sensing
matrix. From Fig.3 (a), (b), and (c), the mutual coherence
values corresponding to each method decrease with high
measurement numbers, and we can note that mutual coherence
value results confirm that the proposed method outperforms
the other methods.
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Fig. 3. Evolution results of: (a) the t-averaged mutual coherence µave, (b)
the maximal coherence µmx, and (c) the global mutual coherence µall, all
versus measurement numbers.

For testing the recovery accuracy performance, we evaluate
the performance of the designed sensing matrix using the
reconstruction error defined as : ‖x̂− x‖2 / ‖x‖

2
2 where x̂ is

the recovered signal by Orthogonal Matching Pursuit (OMP)
algorithm by varying the sparsity K and generating k-sparse
signals s from a standard normal distribution (0, 1) with i.i.d.
elements. Fig.4 depicts the reconstruction error results as a
function of sparsity levels.
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Fig. 4. Comparison results of reconstruction error v.s. different sparsity levels
K.

According Fig. 4 , we can note that the proposed algorithm
can achieve better recovery accuracy than other methods along
all sparsity levels. For a fixed sparsity level K = 8, and fixed
dimension L = 120, N = 80, Fig. 5 represents errors results
by varying the measurement numbers M . From this figure,
recovery accuracy results obtained by the proposed sensing
matrix design via OMP algorithm is better than the other
results. Under different SNR values from 5 to 50dB, we
evaluate the recovery error of the AWGN model as illustrated
in Fig.6 with fixed dimension M = 28 and sparsity level
K = 8. As demonstrated, recovery error results acquired
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by the proposed method are excellent compared to the other
results.
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Fig. 5. Comparison results of reconstruction error results v.s. different
measurement numbers M
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Fig. 6. Comparison results of reconstruction error results v.s. SNR.

V. CONCLUSION

In this paper, we proposed and analyzed an iterative alter-
nating minimization approach for optimizing sensing matrix
design. Our method simultaneously minimizes the mutual
coherence values (µmx , µave , and µall ) to enhance CS
recovery performance. Furthermore, the proposed algorithm
incorporates a simple yet effective shrinkage function in the
update phase to approximate ETF properties, enabling the
design of robust sensing matrices applicable to various CS
scenarios. Simulation results confirm that our method signifi-
cantly reduces mutual coherence indices while improving sig-
nal reconstruction accuracy compared to existing approaches.
Future work will explore extensions to non-Gaussian dictio-

nary structures, adaptive thresholding strategies, and real-time
implementations for large-scale applications.
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