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Abstract—We consider the following inference problem: Given
a set of edge-flow signals observed on a graph, lift the graph
to a cell complex, such that the observed edge-flow signals
can be represented as a sparse combination of gradient and
curl flows on the cell complex. Specifically, we aim to augment
the observed graph by a set of 2-cells (polygons encircled by
closed, non-intersecting paths), such that the eigenvectors of the
Hodge Laplacian of the associated cell complex provide a sparse,
interpretable representation of the observed edge flows on the
graph. As it has been shown that the general problem is NP-hard
in prior work, we here develop a novel matrix-factorization-based
heuristic to solve the problem. Using computational experiments,
we demonstrate that our new approach is significantly less
computationally expensive than prior heuristics, while achieving
only marginally worse performance in most settings. In fact,
we find that for specifically noisy settings, our new approach
outperforms the previous state of the art in both solution quality
and computational speed.

Index Terms—Topological signal processing, graph signal pro-
cessing, cell inference, cell complex, edge flows

I. INTRODUCTION

Graphs have become a prevalent abstraction in data science
due to their ability to model many real-life systems [1]. Graph
signal processing (GSP) [2], [3] enables signal processing for
signals that are defined on such graphs, such as temperatures
measured at different locations or neuron activity in different
parts of the brain. However, in many applications, the recorded
data represents flows, e.g. of people [4], traffic [5], or money
[6]. Such flows are often more naturally represented with an
(oriented) signal on the edges of a graph. To process such edge
signals, recent extensions of GSP towards topological signal
processing (TSP) [7]-[12] utilize simplicial complexes or cell
complexes, and their associated Hodge Laplacians.

These Hodge Laplacian operators, a generalization of the
graph Laplacian to higher dimensions, are a central pillar of
TSP, and can be used in lieu of the graph Laplacian as shift
operators in signal processing tasks for signals defined on the
edges or higher-dimensional cells of a complex. Importantly,
the 1-Hodge Laplacian induces a decomposition of the space
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of edge flows into gradient, curl, and harmonic flows [13],
[14]. Similarly to the graph Laplacian in GSP, the eigenvalues
and corresponding eigenspaces of this Hodge Laplacian enable
the construction of low- and high-pass filters, denoising, signal
compression, and other classical signal processing tasks [9].
However, the higher-order cell structure of the complexes
used to construct these Hodge-Laplacians is typically not
readily available. Specifically, when considering edge-flow
data, commonly only the underlying graph structure and the
associated edge flows are observable. Therefore, analogously
to inferring a graph structure from data on the nodes [3],
different methods to infer simplicial complex from edge data
on a graph have been proposed [8], [15]. The general problem
of inferring a cell complex from such data, i.e., finding an
optimal set of 2-cells (polygons) such that the edge-flows
can be represented by a sparse set of eigenvectors of the
Hodge Laplacian, was introduced in [16]. It was shown that
this problem is NP-hard, and thus [16] introduced a heuristic
algorithm to solve it.
Contribution. In this paper, we introduce an alternative ap-
proach to solving the cell inference problem using matrix de-
compositions. As we show, our novel approach is significantly
faster and incurs only a marginally higher approximation error
than the originally proposed heuristic. In our experiments,
this trade-off is particularly advantageous on larger networks,
when inferring a large absolute number of 2-cells, and in the
presence of high noise.

II. BACKGROUND

This introduction to 2-dimensional cell complexes is in-
spired from [17].

We consider 2-dimensional complexes constructed by aug-
menting simple undirected graphs as follows. Consider a graph
G = (V,&) with a set of vertices V = {v1,...,v,} and a set
of edges by £ = {ey, ..., en}. Each edge e;, consists of a pair
of vertices e = (v;, v;), with arbitrary but fixed order. We call
v; the source and v; the target of e;,. We encode the structure
of the graph in an incidence matrix By € {0,£1}"*™. For
every edge ey, oriented from v; to vj, we have (B1),; =1
and (B1);r = —1, and (B1)_ , = 0 otherwise.

Definition 1 (Simple cell complexes of dimension 2). An
abstract regular cell complex C of dimension 2 consists of
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a graph G, and a non-empty ordered set of 2-cells (polygons)
Co, encoded via a boundary matrix By € {0,41}7*IC2l.
Specifically for every 2-cell § € Cy, we have a set of edges
{e1,...,em} corresponding to a simple cycle in G which
forms the boundary of 6. Each column of By corresponds
to such a cycle and the entries of the associated edges are set
to =1 such that BBy = 0.

Remark 2 (Orientation). Note that the above construction
amounts to equipping each edge and each polygon with a
reference orientation. This built-in notion of orientation allows
for a natural representation of physical data like flows via
positive or negative values (with or opposite to the orientation).

Oriented signals on CCs can be represented as chains:

Definition 3 (Signal (or chain) space of a cell complex). Given
a cell complex C, we denote by Cj, = RIC+| the k-th signal
space of C and obtain an associated sequence of signal spaces

C() S Cl — 02
B, B2

The boundary matrices By, are linear maps between the

signal spaces Cj. In this paper, we analyze flows from the
signal space on edges C;.
Hodge Laplacian and Hodge decomposition. The Hodge
Laplacian Ly = B;Bk —|—Bk+1BkT_H is a generalization of the
Graph Laplacian [13], [14], [18]. The Hodge decomposition
divides the space of edge flows C; into three eigenspaces
associate to Li: The gradient space Imn B, the curl space
Im Bs, and the harmonic space ker B1T N ker B,. Intuitively,
the gradient space consists of flows based on the difference
between potentials on the nodes and the curl space consists of
flows around the boundaries of 2-cells.

For a flow f € C; on a cell complex C, we define the
gradient flow grad.(f) = B{ (B])'f, curl flow curle(f) =
B, (B,)f, and harmonic flow harme(f) = (I — Ly (Ly)H)f.
()T denotes the Moore-Penrose pseudoinverse.

III. THE CELL INFERENCE PROBLEM

Given a graph and a set of observed flows, the cell inference
problem is to find a sparse set of 2-cells that minimize the pro-
jection of the flows into the harmonic space when added. We
denote the given graph by G = (V, €) and the s € N sampled
edge flows by f; € Cy for i € {1,...,s}. In the following,
we use F to denote the matrix of all flows F = [fy, ..., f;].

More formally, the problem can be modeled as an opti-
mization problem: find a 2-dimensional cell complex C which
minimizes the harmonic projection of the flows F onto the
harmonic space of C.:

s 1/2
L(C,F) = [[harme (F)[|r = (Z IIhaan(fi)Hg) S
i=1

As minimizing this loss without constraints on the number of
cells would result in a C with an empty harmonic space, we
formulate the minimization problem such that the number of
2-cells is constrained:

rr}jin L(C,F) s.t. C has G as 1-skeleton and |[C3| < k (5)

Without loss of generality, we will in the following assume
that the flows F' are gradient free, as any gradient component
will not alter the optimal C in our optimization problem.

IV. METHODS

As proposed in [16], we can proceed in an iterative fashion
to solve the cell inference problem. We start with (i) a cell
complex C (0 equivalent to G, (ii) the number of cells to add
per iteration !’, and (iii) the number [ of cell candidates to
consider, with I’ < [. In each iteration 4, we add !’ new 2-cells
952), e Hl(f ) until the desired amount of 2-cells are inferred:

CO DU jeL,... U]} 6)

To operationalize this algorithmic idea, we have to address
two questions. First, how do we obtain possible cell candidates
6%2), . 61(1) in each iteration? Second, how do we evaluate the
candidates in each iteration and select the best?

In the original work [16], a Spanning Tree Heuristic (SPH)
was proposed that constructs candidate 2-cells from one or
multiple constructed spanning trees. The candidate cells that
(when added to the cell complex) maximally decrease the loss
are then selected greedily. This requires computing several
harmonic projections of an (augmented) cell complex per iter-
ation, which is the computationally most expensive part of the
algorithm (even though efficient algorithms like LSMR [19]
can be used to compute the projections).

There is also a more subtle issue associated with the SPH
approach, that leads to many iterations required to infer appro-
priate cells. When using spanning trees to generate candidate
cells, each candidate cell contains exactly one edge outside
the spanning tree, and at least two edges from the tree.
Importantly, candidate cells that significantly lower the loss
are likely to share edges in the spanning tree. Adding one of
those cells to the complex will account for the flow on all
the shared spanning tree edges. The other candidates are thus
unlikely to decrease the loss significantly, as they share many
edges with the already added cell. Hence, in [16], only one
cell is added in each iteration.

Matrix-factorization-based approach

In the following we present a novel, modular framework
called Matrix-Factorization-Cell-Inference (MFCI) (cf. Fig-
ure 1, Algorithm 1) to solve the cell inference problem. For
this, we interpret Equation (5) as a problem to find a matrix
B, that minimizes:

min |[F — B,C|| st ByeBF) CceRF' (7)
BQ,C

where Bék/) is the set of valid edge-to-cell boundary matrices
of cell complexes with k' < k 2-cells and a 1-skeleton given
by G; C is a matrix of real coefficients. Given a matrix B, an
optimal C can be obtained by solving a least squares problem.

Our key idea now is to first find a low-rank approximation of
the flows F' ~ B - C using a matrix factorization, without con-
sidering the constraints on B; and then discretize the columns
of B to correspond to valid boundary vectors of 2-cells. This
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Fig. 1. Overview of the complete inference approach. (a) shows an overview of our Cell Inference Algorithm, adapted and modified from [16]. Like the
original algorithm, our matrix-based alternative takes a graph with flows on its edges as an input (1) and iteratively adds 2-cells. Both approaches project
the flows into the harmonic space (2). Our approach introduces a matrix-factorization-based heuristic for finding candidates (3) that also makes the individual
evaluation of the candidates (4) optional in practice. Furthermore, our approach can add multiple cells (instead of one) in each iteration (5). (b) shows the
concept of the novel candidate heuristic in MFCI. The harmonic flows are decomposed into two matrices, resembling a relaxed version of flows generated by
a boundary matrix. Thus, the left matrix can be discretized to one cell candidate per column. Pseudocode of steps 2-5 is given in Algorithm 1

Algorithm 1 One Iteration of Candidate Search for MFCI

Input: cell complex CC, the amount of desired 2-cells [ € N
Output: a set of k 2-cells

1: Compute the matrix factorization B - C ~ harm¢(F)
2: Extract the most promising row vectors by, ..., b, from B
3: Discretize by,...,b; to 2-cells 64,...,6;

4: Return: {0y,...,6,}

idea can be iteratively applied several times, adding multiple
cells in each iteration. To create a practical algorithm from this
idea we need to choose a suitable matrix factorization method,
a heuristic to find cell candidates from this factorization,
and a procedure to evaluate and select the best candidates.
As a secondary consideration, we also consider an efficient
approximation for calculating the harmonic flows.
Calculating (approximate) harmonic flows. In each step ¢,
SPH calculates the harmonic flows H(*) := harm¢ (F). To
increase speed, MFCI can (optionally) use an approximate
update of the harmonic flow instead. Consider that, in sparse
configurations, there are few overlaps between 2-cells from
different iterations. Thus, the change in harmonic flow depends
mostly on the boundaries BY), ... ,Bl(f) of the chosen cells.
With H® = F, we can approximate the harmonic flow as:

HO  gi-»_ [531’) . 5;;‘)} . [ggw . |§,§}'>} "BOCO ()

Matrix factorization. To find a suitable matrix factorization
F ~ B-C for our application, let us first collect some desirable
properties for this factorization. First, the approximation error
||IF —B - C| should be low. To make the discretization of
the columns of B to 2-cells easy, the entries of B should also
almost fulfill the properties of a boundary matrix already: First,
the entries of B should be 0 or 1. Second, the boundary of
B should be zero: BiB = 0.

The first possible factorization we consider is a (truncated)
Singular Value Decomposition (SVD) of F, which is the

optimal low-rank approximation. However, the entries are
typically not close to 0O or £1. Hence, we also consider
Independent Component Analysis (ICA) [20], which separates
a matrix into statistically independent components that are
not necessarily orthogonal. In practice, this is often closer
to the desired decomposition into a boundary matrix B and
associated circulations around 2-cells.

Obtaining 2-cell candidates. We apply the chosen matrix
factorization strategy iteratively to find 2-cell candidates. In
each iteration, we calculate a low-rank matrix approxima-
tion B® . C® HO=Y (e.g. using the SVD). In each
iteration, we first calculate the approximation error of each
column of the matrix B(®) as [[H(—1) — B(_l)jCS-I)_Hl, where
lAllL = >, ;[A:; | denotes the L; norm. We keep the I
columns bgl), e ,bl(l) of B with the lowest approximation

error and discretize them to valid 2-cell candidates using one
of two heuristics:

~
~

o The deterministic heuristic creates a candidate by addin,
edges in decreasing order of their absolute values in by
to an empty graph until a (unique) cycle is formed.

o The random-walk based heuristic simulates a random
walker, using the corresponding values from chosen vec-
tors of the matrix factorization by) as weights for the
probability distribution. Once the random walk forms a
cycle, this cycle is returned as the candidate. Each cycle
identifies a 2-cell 9;(1).

We add the !’ best candidates to the cell complex (see

Equation (6)); for [ = I’, we skip the evaluation.

Our approach infers a 2-cell candidate for each column of
the approximation. The number of 2-cell additions in each
iteration thus depends on the number of chosen columns, and
the rank of the matrix approximation. Since the rank of F is
bounded by s, multiple cells can only be added for s > 1. As
with a larger number of samples s, the low-rank approximation
is more likely to eliminate noise in the observed flow data, we
expect MFCI to be most useful when many flows are observed.
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Fig. 2. MFCI with deterministic candidate heuristic and SPH on an

Erd6s—Rényi with n = 40, p = 0.9, 50 sampled 2-cells, 64 flows and
edge noise with o = 0.3. “1008” means that the best cell of 8 candidates
got added each iteration and “800-1" adds all 8 cells that get inferred each
iteration. In (a) the SVD is the theoretical mathematical optimum. In (b) SVD,
Construction and Random have no corresponding time, because they are only
shown for reference.

V. EXPERIMENTS

For the empirical evaluation, we compare both the approx-
imation error and the compute time of our new approach to
the state-of-the-art method SPH! [16] and the non-discretized
SVD, which is the optimal continuous solution. We choose
the rank of the matrix factorization to be equal to the number
of candidates [.

We generate synthetic random CCs using the algorithm from
[21]. We sample flow signals f; = Bac; + £/, where ¢; € Cy
is a signal obtained from an i.i.d. gaussian distribution on all
2-cells and f] € Cy is i.i.d. gaussian noise on the edges.

We also consider real-world data based on taxi trips in New
York City [22], [23]. The transitions between neighborhoods
in a driver’s trajectory are represented as a directed flow. These
flows are then aggregated into s flows via summation.
Synthetic Data. Figure 2 shows the approximation errors and
compute times on synthetic data. As the ICA-based factoriza-
tion approach outperforms the SVD-based approach in both
approximation error and compute time, we only show the
former. For the most significant speed-up, we skip evaluation
of candidates and use the approximate update of the harmonic
flow. With this configuration (denoted “8oo-1" in Figure 2),
no calls to LSMR are required. Thus, the computation is
fast while the approximation error is comparable to SPH.
By evaluating candidates and only adding the best in each
iteration (like SPH does), MFCI outperforms SPH in terms
of approximation error, with a similar (if slightly larger)
computational requirement. In fact, the approximation error
is close to the ground truth of the sampled cells.
Real-World Data. In Figure 3, we compare MFCI to SPH
on the taxi dataset. The maximum spanning tree heuristic is
configured to only evaluate one candidate per iteration, which
requires only one call to LSMR.

In contrast to the synthetic data, the SPH heuristics are more
accurate than MFCI. Furthermore, in MFCI, using the SVD

IUnless stated otherwise, we use the similarity SPH heuristic with 11
clusters and 11 cell candidates like in the original paper. In our experiments,
a larger number did not significantly improve accuracy.
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Fig. 3. MECI (random walk heuristic) vs SPH on Taxi Set with 128
flows. The Max Spanning Trees only evaluates 1 candidate per iteration. The
SVD shows the approximation loss of F' using the mathematical optimal
approximation without constraints on the matrices as required by problem 7.
In subfigure (a), we see the size of the projected harmonic flow depending
on the added 2-cells. In subfigure (b), the cumulative times are presented.
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approximation via pseudoinverse (pinv) to calculate the remaining harmonic
flow. Candidates obtained using the deterministic heuristic.

significantly outperforms the ICA, which is just slightly better
than the random baseline. However, it is also notable that, after
40 added 2-cells, the difference in error between SPH and
MEFCI stays approximately constant. The computational times
behave similarly to the synthetic data, with MFCI (without
candidate evaluation) being significantly faster than SPH.

Harmonic Flow Approximation. We evaluate the usefulness
of the proposed approximate calculation of the harmonic flow
using the pseudoinverse. Figure 4 compares the configurations
of MFCI from Figure 2 to the equivalent approximation
variants. For MFCI with candidate evaluation, we see a small
increase in approximation error with a negligible performance
improvement when using the approximation. However, for the
faster variant without candidate evaluation, the error does not
increase, but the computation time is less than half of the
original. Overall, this suggests that the approximation is a good
trade-off for the faster variant of MFCI.

Robustness to Noise. Figure 5a shows the relative perfor-
mance of MFCI compared to SPH for different noise levels.
We observe that for low noise levels, SPH is more accurate
than MFCI, but the opposite is true for higher noise levels. We
hypothesize that the low-rank matrix factorization filters out
noise in the data, leading to better candidate cells than in SPH.
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approx. calculation of harmonic flow, deterministic candidate heuristic) com-
pared to SPH on a CC sampled from Erd6s—Rényi with n = 40,p = 0.9, 80
sampled 2-cells, and 64 flows. The flow and the noise were drawn from normal
distributions with mean p = 0O; the former with a standard deviation o = 1
and the latter according to the legend. We show the relative performance
because the inferred cells and approximation error change with the noise level.
The relative performance is calculated as (r—a)/(r—b) where r is the average
error of a random algorithm, a is the error of MFCI and b is the error of SPH.
As such, a relative performance of 0 is as good as adding random cells; a value
of 1 is as good as SPH. A value above 1 indicates that MFCI outperforms SPH.
(b) Different no. of ranks and candidates for MFCI (ICA, loo_); showing
negligible impact of rank on accuracy. Experiment settings from Figure 2;

VI. CONCLUSION

We presented a new framework, MFCI, that approximately
solves the general cell inference problem by using matrix fac-
torization. Overall, our experiments show that compared to the
previous state-of-the-art, MFCI achieves a significant speed-
up at the expense of a small increase in the approximation
error in certain settings. Furthermore, in noisy configurations,
MECI achieves a better approximation error.

Importantly, we saw qualitatively different results on syn-
thetic and real-world data. The synthetic data was based on
the same assumptions made in the development of MFCI,
namely, that there are underlying 2-cells that generate flow
independently of each other. It is likely that real-world data
has strong correlations, leading to a less useful matrix decom-
position. This hypothesis is consistent with the observation that
ICA, which employs similar inherent assumptions, performs
poorly on real-world data. Nevertheless, MFCI with SVD is
useful for applications where its significant speed-up (and thus
increased scalability) outweighs its relatively small increase in
approximation error. The approximation error is based on sig-
nal compression and likely translates well to signal processing
tasks, but it is unclear how it affects the performance of other
downstream tasks built on the inferred cells.

There is a large space of possible configurations for MFCI
that exceeds the scope of this paper. First, any component
of MFCI could be replaced, mainly the matrix factorization
method and the heuristic to obtain candidates. Furthermore, the
projection could use a hybrid approach where the approximate
method is used, but the projection is done explicitly in some
iterations. Second, due to the iterative nature of both MFCI
and SPH, it is also possible to combine the two methods.
As we have seen, SPH performs particularly well in the first
iterations, where it is also comparatively fast. Therefore, it
may be advantageous to design a hybrid approach, where the

first few iterations are performed with SPH and the remaining
iterations with MFCI. Ideally, this could combine the accuracy
of SPH in the early iterations with the better computational
performance of MFCI in the later, more computationally
expensive, iterations.
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