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Abstract—We propose a Douglas-Rachford splitting algorithm
for the LiGME model which is a least squares estimation frame-
work utilizing a nonconvex regularizer to promote sparsity while
preserving the overall convexity of the problem. The proposed
algorithm guarantees global convergence to the optimal solution
under an overall convexity condition. By utilizing a slightly
modified inner product, the matrix inversion in the updates of
the proposed algorithm is reduced to sparse matrix inversion
in certain situations. A numerical experiment demonstrates that
the proposed algorithm achieves faster convergence compared to
existing algorithms for the LiGME model.

Index Terms—LiGME model, Douglas-Rachford splitting al-
gorithm, Piecewise-Constant Signal Recovery.

I. INTRODUCTION

Many tasks in inverse problems for data science and en-
gineering, including signal processing and machine learning,
involve estimating a vector x⋆ ∈ X from observed data:

y = Ax⋆ + ϵ ∈ Y , (1)

where (X , 〈·, ·〉X , ‖ · ‖X ) and (Y, 〈·, ·〉Y , ‖ · ‖Y) are finite-
dimensional real Hilbert spaces, A : X → Y is a known
bounded linear operator, and ϵ ∈ Y represents an unknown
noise vector. In many applications of this estimation problem,
it is known that x⋆ has a sparse representation through a linear
transformation L : X → Z . Utilizing this prior information is
key to constructing effective estimation algorithms.

A common approach to such estimation problems is to solve
the regularized least squares problem:

Minimize
x∈X

1

2
‖y −Ax‖2Y + µΨ ◦ L(x), (2)

where Ψ: Z → (−∞,∞] is utilized. Examples where Ψ ◦ L
is a convex function include the Total Variation (TV) regular-
ization [1] and wavelet-based sparsity regularization methods
[2]. In these methods, the ℓ1 norm ‖ · ‖1, known as the best
convex lower approximation of the ℓ0 pseudo-norm, has been
widely employed as Ψ, notably in the Lasso regression [3]
(which utilizes (Ψ,L) = (‖·‖1, Id)). Despite its effectiveness,
Lasso suffers from underestimation bias in the estimation
of large coefficients, which leads us to explore alternative
regularizations.

This work was supported in part by JSPS [grants-in-aid 23K11246] and
JST SICORP [grant number JPMJSC20C6].

To address the bias issue, various nonconvex sparsity-
promoting regularizations have been introduced (see, e.g.,
[4]–[6]). However, nonconvex regularization often makes the
problem (2) difficult to find a globally optimal solution.

To circumvent these difficulties, convexity-preserving reg-
ularizers have been developed, i.e., the regularizer Ψ ◦ L is
chosen to be nonconvex while ensuring the overall convexity
of the optimization problem (2). One such method for the case
of (Ψ,L) = (‖ · ‖1, Id) is the minimax concave (MC) penalty
[7], which ensures overall convexity by relying on the strong
convexity of the quadratic function 1

2‖y − A(·)‖2Y (i.e., the
nonsingularity of A⊤A). In cases where strong convexity is not
satisfied, the generalized minimax concave (GMC) penalty has
been proposed as an extension of the MC penalty to achieve
overall convexity [8].

For general L, the LiGME model [9] employs a nonconvex
penalty to promote sparsity in the transform domain while
preserving overall convexity. This model modifies (2) by re-
placing Ψ with the GME penalty function ΨB (see Definition 1
in Sec. II-B), which can further emphasize sparsity:

Minimize
x∈X

1

2
‖y −Ax‖2Y + µΨB ◦ L(x). (3)

While the LiGME model (3) has favorable theoretical prop-
erties, its algorithmic solvers still leave room for improvement.
In [9], an iterative algorithm (see also Fact 3(b); hereafter
refered to as Abe’s algorithm) was introduced, inspired by the
Condat-Vu primal-dual algorithm [10], [11], which involves
matrix multiplications and proximity operators in a high-
dimensional Hilbert space. This approach is computationally
efficient and has theoretical convergence guarantees to a glob-
ally optimal solution. On the other hand, for a generalization
of the LiGME model, the DC (difference of convex functions)
algorithm has been proposed [12], which solves more com-
plex subproblems at each iteration. Although this algorithm
converges faster in practice, it only guarantees subsequential
convergence to an optimal solution, not whole sequence con-
vergence. Thus, there remains a need for algorithms that ensure
both global convergence and numerical efficiency.

In this paper, we propose a Douglas-Rachford splitting
algorithm for the LiGME model (3), which numerically
achieves faster convergence compared to Abe’s algorithm
while theoretically guaranteeing global convergence of the
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iterates to the optimal solution.1 Although the updates of the
proposed algorithm involve inverse matrix computations, we
reduce these computations to those for sparse matrices by
introducing a special inner product on the Hilbert space under
certain situations (more precisely, the matrix representation
of A∗A, L, and L∗ are sparse). A numerical experiment in
a piecewise-constant signal recovery demonstrates that the
proposed method achieves significantly faster convergence.

II. PRELIMINARIES

A. Douglas-Rachford algorithm

The Douglas-Rachford algorithm is a widely used method
for finding a zero of the sum of two maximally monotone op-
erators.2 Its important building block is the Douglas-Rachford
splitting operator [15, Proposition 26.1(c)] TA,B in Fact 1.

Fact 1: Let A and B be maximally monotone operators
from H → 2H. Let γ ∈ R++, and let P be the set of solution
of the problem to findx ∈ H such that 0H ∈ Ax + Bx, and
let3

TA,B =
RA ◦RB + IdH

2
. (6)

Then the following hold:4 (a) TγA,γB is firmly nonexpan-
sive; (b) P = (Id + γB)−1 (FixRγARγB) = (Id +
γB)−1 (FixTγA,γB) = TOH,γB (FixTγA,γB); (c) P 6= ∅ ⇔
FixTγA,γB 6= ∅.

The Douglas-Rachford algorithm and its convergence prop-
erties are described in Fact 2, which is an adaptation of

1The Douglas-Rachford splitting algorithm (see Sec. II-A) is known as one
of the most prominent splitting algorithms [13]. In [8], the idea of using the
Douglas-Rachford splitting algorithm as a solver for the least squares problem
(2) with Ψ chosen as the MC penalty is mentioned. Inspired by this idea, we
developed the proposed method.

2See Appendix for basic mathematical notations. The class of proper
lower semicontinuous convex functions from H to (−∞,+∞] is denoted
by Γ0(H).

Let A : H → 2K. Denote its graph by graA =
{(x, u) ∈ H×K | u ∈ Ax}. The inverse of A, denoted by A−1, is
defined through its graph graA−1 = {(u, x) ∈ K ×H | (x, u) ∈ graA}.
The set of zeros of A is zerA = A−10H = {x ∈ H | 0H ∈ Ax}.

Let A : H → 2H. The operator A is monotone if

(∀(x, u) ∈ graA) (∀(y, v) ∈ graA) 〈x− y, u− v〉H ≥ 0. (4)

A monotone operator A is maximally monotone (or maximal monotone) if
there exists no monotone operator B : H → 2H such that graB properly
contains graA, i.e., for every (x, u) ∈ H×H,

(x, u) ∈ graA ⇔ (∀(y, v) ∈ graA) 〈x− y, u− v〉H ≥ 0. (5)

It is well-known that ∂f is maximally monotone for f ∈ Γ0(H) [14] (See
Also [15, Theorem 20.25]), where ∂f denotes the subdifferential of f , defined
as the set-valued operator

∂f : H → 2H : x 7→ {u ∈ H | (∀z ∈ H)〈z − x, u〉H + f(x) ≤ f(z)}.

Every element u ∈ ∂f(x) is called a subgradient of f at x.
3Let A : H → 2H. The resolvent of A is (IdH +A)−1 and the refrected

resolvent is RA : H → H : x 7→ 2(IdH +A)−1x− x.
4Let T : H → H. The set of fixed points of T is denoted by FixT , i.e.,

FixT = {x ∈ H | Tx = x}. The operator T is nonexpansive if it is
Lipschitz continuous with constant 1, i.e., (∀x ∈ H)(∀y ∈ H) ‖Tx −
Ty‖H ≤ ‖x − y‖H; The operator T is firmly nonexpansive if (∀x ∈
H)(∀y ∈ H) ‖Tx−Ty‖2H+‖(IdH−T )x−(IdH−T )y‖2H ≤ ‖x−y‖2H.
Note that the operator T is firmly nonexpansive if and only if R := 2T − Id
is nonexpansive.

[15, Theorem 26.11] to the cases of finite dimensional Hilbert
spaces instead of general real Hilbert spaces.

Fact 2: Let A,B, γ, and P as in Fact 1. Suppose zer(A+
B) 6= ∅. Let (λk)k∈N be a sequence in [0, 2] such that∑

k∈N λk(2− λk) = +∞. Let y0 ∈ H, and

for k = 0, 1, . . . xk = TOH,γB(yk),
zk = TγA,OH(2xk − yk),
yk+1 = yk + λk(zk − xk).

(7)

Then there exists y⋆ ∈ FixRγARγB = FixTγA,γB such that
lim
k→∞

yk = y⋆. Now set x⋆ = TOH,γB(y⋆). Then the following
hold: (i) x⋆ ∈ P . (ii) lim

k→∞
‖xk−zk‖H = 0. (iii) lim

k→∞
xk = x⋆

and lim
k→∞

zk = x⋆.

B. A brief review of LiGME model

Definition 1 (Linearly involved Generalized-Moreau-
Enhanced (LiGME) Model [9]): Let (X , 〈·, ·〉X , ‖ · ‖X ),
(Y, 〈·, ·〉Y , ‖ · ‖Y), (Z, 〈·, ·〉Z , ‖ · ‖Z), and (Z̃, 〈·, ·〉Z̃ , ‖ · ‖Z̃)
be finite dimensional real Hilbert spaces, Ψ ∈ Γ0(Z) coercive
(i.e., ‖z‖Z → ∞ ⇒ Ψ(x) → ∞) with domΨ = Z ,
B ∈ B(Z, Z̃), L ∈ B(X ,Z), and (A,L, µ) ∈ B(X ,Y) ×
B(X ,Z)× R+. Then:
(a) GME penalty function ΨB ∈ Γ0(Z) is defined as

ΨB(·) := Ψ(·)−min
v∈Z

[
Ψ(v) +

1

2
‖B(· − v)‖2Z̃

]
.

(b) Linearly involved Generalized-Moreau-Enhanced
(LiGME) penalty is defined as ΨB ◦ L : X → (−∞,∞].
(c) LiGME model is defined as the minimization of

JΨB◦L : X → R : x 7→ 1

2
‖y −Ax‖2Y + µΨB ◦ L(x). (8)

Fact 3 (Selected properties of LiGME model [9]):
(a) (Overall convexity condition for the LiGME model [9,

Proposition 1]) The GME penalty function ΨB in Definition 1
has the following properties: for the three conditions (C1)
A∗A − µL∗B∗BL � OX , (C2) JΨB◦L ∈ Γ0(X ) for any
y ∈ Y , and (C3) J (0)

ΨB◦L := 1
2‖A · ‖2Y +µΨB ◦L ∈ Γ0(X ), the

relation (C1)⇒(C2)⇔(C3) holds (Note: See [16] for details
on the specific design method of B to satisfy (C1)).
(b) (Iterative approximation of a global minimizer of JΨB◦L
[9, Theorem 1]) Let Ψ ∈ Γ0(Z) in Definition 1 be prox-
friendly and even symmetry (i.e., Ψ ◦ (−IdZ) = Ψ). Assume
the condition (C1) in (a) and the existence of a minimizer, of
JΨB◦L, in X . Let H := X × Z × Z . Define TLiGME : H →
H : (x, v, w) 7→ (ξ + 1

σA
∗y, ζ, η) by

ξ :=

[
Id− 1

σ
(A∗A− µL∗B∗BL)

]
x−µ

σ
L∗B∗Bv−µ

σ
L∗w,

ζ :=Proxµ
τ Ψ

[
2µ

τ
B∗BLξ−µ

τ
B∗BLx+

(
Id−µ

τ
B∗B

)
v

]
,

η :=[Id− ProxΨ](2Lξ − Lx+ w), (9)
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where5 (σ, τ, κ) ∈ R++×R++×(1,+∞) is chosen to satisfy6{
σId− κ

2
A∗A− µL∗L � OX ,

τ ≥
(
κ
2 + 2

κ

)
µ‖B‖2op.

(11)

Then, for any initial point (x0, v0, w0) ∈ H, the sequence
(xk)k∈N ⊂ X , in (xk, vk, wk)k∈N ⊂ H generated by

(xk+1, vk+1, wk+1) = TLiGME(xk, vk, wk) (12)

converges to a global minimizer of JΨB◦L.

III. PROPOSED METHOD: A DOUGLAS-RACHFORD
SPLITTING ALGORITHM FOR THE LIGME MODEL

We shall derive an algorithmic solution for the following
constrained problem.

Problem 1: For the function JΨB◦L in (8) and a
closed convex constraint set C ⊂ X , suppose that
argmin (JΨB◦L + ιC) 6= ∅ holds7. Assume that the overall
convexity condition A∗A − µL∗B∗BL � OX (i.e., (C1) in
Fact 3) hold. Then, find a solution of

Minimizex∈X JΨB◦L(x) + ιC(x). (13)

For this problem, we denote the solution set by S .
Remark 1 (On Problem 1):

(a) The existence of a solution to Problem 1 is guaranteed, for
instance, for the cases where JΨB◦L+ιC is proper and coercive
(See, e.g., [15, Section 11.4]). More specific conditions for the
existence of a solution in the Euclidean spaces are discussed
in [17]. Additionally, in the special case where (Ψ,L) := (‖ ·
‖1, IdZ), an analysis of the solution path is provided in [18].
(b) The simultaneous use of the LiGME penalty and closed
convex constraints has been proposed in [19]–[21]. □

To derive a Douglas-Rachford algorithm for Problem 1, we
reformulate Problem 1 as finding a zero of the sum of two
carefully constructed maximally monotone operators, A and
B (in Theorem 1 below) defined in a higher-dimensional space

(Hµ := X × Z × Z , 〈·, ·〉Hµ
:= 〈·, ·〉IdX×IdZ×µIdZ , ‖ · ‖Hµ

)

with a slightly modified inner product. This inner product is
designed to enhance the sparsity of the matrices that require
matrix inversion in the iterative computations of the resulting

5The proximity operator of f ∈ Γ0(H) is defined by Proxf : H → H :
x 7→ argmin

z∈H
f(z)+ 1

2
‖z−x‖2. It is also well known that Proxf is nothing

but the resolvent of ∂f , i.e., Proxf = (I + ∂f)−1.
6For example, for any κ ∈ (1,+∞) and δ > 0, the selection

σ =
(

the maximum eigenvalue of
κ

2
A∗A− µL∗L

)
+ δ,

τ =

(
κ

2
+

2

κ

)
µ‖B‖2op, (10)

satisfies the condition (11).
7For a nonempty closed convex set C ⊂ H, the indicator function of C is

defined by

ιC : H → (−∞,∞] : x 7→
{

0, if x ∈ C;
+∞, otherwise,

which belongs to Γ0(H).

algorithm, particularly in cases where A∗A, L, and L∗ are
sparse (For further details, see Remark 2 below).

Theorem 1: For Problem 1, define an affine operator

A : Hµ → Hµ : (x, v, w) (14)

7→
(
[A∗A− µL∗B∗BL]x−A∗y + µL∗B∗Bv + µL∗w,

µB∗B(v − Lx),−Lx
)

and a set-valued operator8B : Hµ → 2Hµ :

(x, v, w) 7→ ∂ιC(x)× µ∂Ψ(v)× ∂Ψ∗(w). (15)

Then

(a) A and B are maximally monotone in
(Hµ, 〈·, ·〉Hµ

, ‖ · ‖Hµ
).

(b) ΞX zer(A+B) = S , where ΞX :Hµ→X : (x, v, w) 7→x.

Theorem 1(b) clarifies that Problem 1 can be reduced to the
problem of finding a point in zer(A +B), i.e., the zero of a
sum of maximally monotone operators.

Problem 2: For two maximally monotone operators A and
B defined in Theorem 1, consider the problem to

findx ∈ Hµ such that 0 ∈ A x+ Bx, (16)

in other words, find a point in zer(A + B) (Note: zer(A +
B) 6= ∅ is guaranteed if and only if Problem 1 has a solution,
i.e., S 6= ∅, because of Theorem 1(b)).

For Problem 2, we can utilize the Douglas-Rachford split-
ting operator in Fact 1 to characterize the solution set zer(A +
B) and the Douglas-Rachford algorithm in Fact 2 as an
iterative algorithm. These ideas lead to the proposed operator
TA ,B in Theorem 2 below and the proposed algorithm for
Problem 2 in Theorem 3 below.

Theorem 2 (Douglas-Rachford splitting operator for Prob-
lem 2): Let γ ∈ R++. The Douglas-Rachford splitting operator
TA ,B for Problem 2 satisfies:
(a) TγA ,γB is firmly nonexpansive in (Hµ,〈·, ·〉Hµ

,‖ · ‖Hµ
);

(b) zer(A + B) = TOHµ ,γB (FixTγA ,γB) and
S = ΞXTOHµ ,γB (FixTγA ,γB);

(c) zer(A + B) 6= ∅ ⇔ FixTγA ,γB 6= ∅;
(d) The operator TγA ,OHµ

can be represented as

TγA ,OHµ
(x, v, w)=(IdHµ

+γM)−1(x+ γA∗y, v, w)

with the linear part of A in (14), i.e., M : Hµ →
Hµ : (x, v, w) 7→ A (x, v, w)+(A∗y, 0Z , 0Z), and the operator
TOHµ ,γB can be represented as

TOHµ ,γB(x, v, w)

=
(
PC(x),ProxµγΨ(v), w − γ Proxγ−1Ψ(γ

−1w)
)
.

Remark 2: (Sparsity promotion in the calculation of
(IdHµ

+γM)−1) In the cases where the matrix representation
of A∗A, L, and L∗ are sparse (whose many entries are zero),
the calculation of (IdHµ

+ γM)−1, required for the resolvent

8For f : H → [−∞,+∞], its conjugate is

f∗ : H → [−∞,+∞] : u 7→ sup
x∈H

(〈x, u〉H − f(x)) .
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Algorithm 1: Douglas-Rachford algorithm for Problem 2

Input: A, L, µ, B, Ψ, C in Problem 1,
(λk)k∈N ⊂ [0, 2] such that

∑
k∈N λk(2− λk) = +∞,

γ > 0, initial (s0, t0, u0) ∈ Hµ.

for k = 0, 1, . . .

1. Compute
xk = PC(sk)
vk = ProxµγΨ(tk)
wk = uk − γ Proxγ−1Ψ(γ−1uk)

2. Find the unique solution (sk+1/2, tk+1/2, uk+1/2)
of a system of linear equations
(IdHµ + γM)(sk+1/2, tk+1/2, uk+1/2)

= (2xk − sk + γA∗y, 2vk − tk, 2wk − uk),

where M =

A∗A− µL∗B∗BL µL∗B∗B µL∗

−µB∗B µB∗B OZ
−L OZ OZ

 .

3. Compute
(sk+1, tk+1, uk+1)
= (sk, tk, uk) + λk

(
(sk+1/2, tk+1/2, uk+1/2)− (xk, vk, wk)

)
.

operator TγA ,OHµ
in Theorem 2(d), reduces to the calculation

of the inverse ofIdX + γA∗A (γ2µ− 1)L∗ γµL∗

OB(X ,Z) IdZ −µB∗B
−γL γIdZ IdZ

 =: Q (17)

whose the matrix representation is more sparse9 compared
to the matrix representation of IdHµ

+ γM, through the
factorization

(
IdHµ

+ γM
)−1

= ML ◦ Q−1 ◦ MR, where
ML : Hµ → Hµ : (x, v, w) 7→ (x, v, γv+w) and MR : Hµ →
Hµ : (x, v, w) 7→ (x− L∗v, v − µB∗w,w). □

Theorem 3 (Proposed Algorithm: Douglas-Rachford algo-
rithm for Problem 2): Consider Problem 2. Let (λk)k∈N ⊂
[0, 2] satisfy

∑
k∈N λk(2−λk) = +∞ and let γ > 0. For any

initial (s0, t0, u0) ∈ Hµ, set

for k = 0, 1, . . . (18)
(xk, vk, wk) = TOHµ ,γB(sk, tk, uk),

(sk+1/2, tk+1/2, uk+1/2)
= TγA ,OHµ

(2xk − sk, 2vk − tk, 2wk − uk),

(sk+1, tk+1, uk+1) = (sk, tk, uk)
+ λk

(
(sk+1/2, tk+1/2, uk+1/2)− (xk, vk, wk)

)
.

Then the sequence (xk, vk, wk)k∈N converges to a point in
zer(A + B) and the sequence (xk)k∈N ⊂ C converges to a
point in S .

IV. NUMERICAL EXPERIMENT IN PIECEWISE-CONSTANT
SIGNAL RECOVERY

We conduct a numerical experiment to evaluate the conver-
gence speed of the proposed algorithm in Theorem 3 for the
LiGME model (3).

(Problem Settings) The goal is to recover a piecewise-
constant signal xTrue ∈ X = R60 from blurred observations
y = AxTrue + ϵ with additve noise ϵ ∈ Y = R56, where

9For sparse matrices, efficient methods for calculating the inverse matrix
have been proposed. One class of such methods is the so-called direct method
(see, e.g., [22] and references therein), which utilizes matrix factorization.
For large-scale sparse matrices, Krylov subspace methods (see, e.g., [23] and
references therein) are promising, as they compute the result of the inverse
matrix multiplication without explicitly constructing the inverse.

(a) Id +M in Algorithm 1. (b) Q in (17).

Fig. 1. The sparsity pattern of (a) Id + M in Algorithm 1 and (b)
Q in (17) where nonzero entries are colored blue while zero values
are white. Q is more sparse compared with Id +M. In fact, Q has
3629 nonzero entries while Id +M has 11285 nonzero ones.

A ∈ B(X ,Y) = R56×60 is a blurring matrix with blur kernel
whose kernel size is 5 and entries of the kernel are drawn from
the uniform distribution in the interval (0, 1). The signal-to-
noise ratio (SNR) is chosen to be 30dB, which is defined as
SNR : 10 log10

∥AxTrue∥2
Y

∥ϵ∥2
Y

[dB].
In order to emphasize the piecewise-constantness of the

signal estimated by the LiGME model (3), let Ψ = ‖ · ‖1
and L be the first-order difference operator

D :=

−1 1
. . . . . .

−1 1

 ∈ R59×60.

In this case, where L = D, Bθ =√
θ/µ

(
I56 − A11⊤A⊤

1⊤A⊤A1

)
AŔD satisfies the overall convexity

condition10 in (C1), i.e., A⊤A − µL⊤B⊤
θ BθL � O60,

where 1 := (1, 1, . . . , 1)
⊤ ∈ R60 and ŔD ∈ R60×59 is a

matrix whose diagonal and upper triangular elements are −1,
and all other elements are 0. Here, assuming no other prior
information on xTrue, we set C = X .

The parameter µ is chosen as µ = 1.2 for the case of B =
Bθ and µ = 0.1 for the case of B = O53×53.

(Algorithm settings) We compare three algorithms: Pro-
posed algorithm (in Theorem 3; λk = 1, γ = 1), Abe’s
algorithm (in Fact 3(b); κ = 2 and σ, τ in (10) with δ = 10−5;
referred to as Abe (LiGME)), and Abe’s algorithm (with the
same settings except for B = O53×53; referred to as Abe
(TV)) for the convex TV penalized LS problem, used as a
benchmark in this numerical experiment. Their performance
is evaluated based on the convergence speed and accuracy of
the estimates.

Here, we present the effect of sparsity promotion as dis-
cussed in Remark 2 (Note: In this numerical experiment,
A⊤A, L, and L⊤ are sparse, while B⊤

θ Bθ is dense). Fig. 1
illustrates the locations of the non-zero elements in Id + M
and Q. Clearly, the block matrix containing B⊤

θ Bθ becomes
dense, while the other blocks remain sparse. Thus Q is more
sparse compared with Id +M.

(Results) Fig. 2 shows that the proposed algorithm demon-
strates significantly faster convergence compared to Abe

10This novel design of Bθ is derived by [16, Theorem 1] with L = I59
and R =

(
ŔD 1

)
. The proof that Bθ satisfies the overall convexity

condition will be reported elsewhere.
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Fig. 2. Performance comparison of the proposed algorithm, Abe
(LiGME), and Abe (TV), and the enlarged view of the first 1000
iterations.

Fig. 3. Estimation results of xtrue by all the algorithms. The results
of Abe (LiGME) and Proposed overlap.

(LiGME). It rapidly decreases the distance to the desired solu-
tion, reaching an accurate estimate in significantly fewer iter-
ations. Abe (LiGME) shows a slower convergence, requiring
more than 30,000 iterations to achieve a similar accuracy as
the proposed algorithm.11 While Abe (TV) converges quickly,
its final accuracy is lower than both the proposed algorithm
and Abe (LiGME).

Fig. 3 depicts the estimation results for all the algorithms
after 50, 000 iterations. The results of the proposed algorithm
and Abe (LiGME) are almost identical, and the two lines
completely overlap in the figure. The proposed algorithm
provides an estimate closer to the true signal xTrue compared
to Abe (TV). While Abe (TV) exhibits fluctuations between
20–30th entries, and errors between 31–38th entries, these
issues are resolved in the estimates obtained using the LiGME
model, including the proposed algorithm.

APPENDIX: BASIC MATHEMATICAL NOTATIONS

Let N, R, R+, and R++ be the sets of natural numbers, real numbers,
nonnegative real numbers, and positive real numbers, respectively. The super-
script (·)⊤ denotes transpose. For a vector x := (x1, x2, . . . , xn) ∈ Rn,
we use ‖x‖p := (

∑n
i=1 |xi|p)1/p (0 < p < ∞), and ‖x‖0 := #{i ∈

N ∩ [1, n] | xi 6= 0}.
Let (H, 〈·, ·〉H, ‖ · ‖H) and (K, 〈·, ·〉K, ‖ · ‖K) be finite dimensional real

Hilbert spaces. B(H,K) denotes the set of all bounded linear operators12

from (H, 〈·, ·〉H, ‖ · ‖H) to (K, 〈·, ·〉K, ‖ · ‖K). For L ∈ B(H,K), we use
‖L‖op := supx∈H : ∥x∥H≤1 ‖Lx‖K. For L ∈ B(H,K), L∗ ∈ B(K,H)

11Abe (LiGME) passes through slightly better candidate solutions between
5000 and 20000 iterations, suggesting that the so-called early-stopping tech-
nique could be effectively utilized, which is beyond the scope of this paper.

12In a real finite dimensional Hilbert space, B(H,K) is identical to the set
of all linear operators.

denotes the adjoint of L, i.e., 〈Lx, y〉K = 〈x, L∗y〉H (∀(x, y) ∈ H×K). We
also use Id (or IdH) to denote the identity operator for general Hilbert spaces.
OB(H,K) ∈ B(H,K) and OH ∈ B(H,H) stand for the zero operators.
For L ∈ B(H,K), L† ∈ B(K,H) stands for the Moore-Penrose pseudo
inverse of L, ran(L) := {Lx ∈ K | x ∈ H} denotes respectively the
range spaces of L. The positive definiteness and positive semidefiniteness of
a self-adjoint operator L ∈ B(H,H) are expressed respectively as L � OH
and L � OH. For any L � OH, by defining an inner product 〈·, ·〉L :
H×H → R : (x, y) 7→ 〈x, Ly〉H and its induced norm ‖x‖L :=

√
〈x, x〉L,

(H, 〈·, ·〉L, ‖x‖L) becomes a real Hilbert space. We use In ∈ Rn×n to
denote the identity matrix for Rn. Om,n ∈ Rm×n and On ∈ Rn×n stand
for the zero matrices.
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