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Abstract—Vector autoregressive (VAR) processes are simple yet
remarkably versatile discrete statistical models used to character-
ize the dynamics of a collection of variables. Although implicitly,
any given VAR process assumes the highest rate, or resolution,
at which those variables may vary. Hence, dynamic variations at
finer rates are out of the explainability of such models by design.
This paper proposes a new method to overcome this drawback.
Specifically, it describes how to increase the resolution associated
with any VAR process such that the process mean is unchanged
and the forecast estimates at the rates given by the original
resolution, and the long-run associated credible intervals, are
closely preserved. Our experiments confirm the viability of the
proposed method for multivariate time series analysis.

Index Terms—Vector autoregressive processes, resolution re-
finement, multivariate time series.

I. INTRODUCTION

A vector autoregressive (VAR) process is a discrete sta-
tistical model that describes the joint behavior of multiple
interdependent variables evolving over an ordered indexed
set. Each variable is expressed as a linear combination of its
previous values, the previous values of other variables, and
an error term. The indexed set typically corresponds to time
instances, but can also consist of other ordered structures.

Albeit simple, VAR processes have proven particularly use-
ful in multivariate time series forecasting [1]. Conversely, VAR
processes suffer from two main limitations in this regard. First,
they cannot model any relation beyond linearity by design,
and second, they are subject to a fixed temporal resolution,
e.g., when the indexed set comes from a uniform sampling of
a continuous time domain. This paper focuses on loosening
the latter limitation by proposing a method to increase the
temporal resolution of any given VAR model.

In the context of this work, the temporal resolution spec-
ifies the uniform rate at which the variables (following a
trajectory parametrized by time) are discretized when being
recorded, processed, or analyzed. Therefore, it is important to
note that the (selected or given) temporal resolution affects
the predictive performance of VAR processes. On the one
hand, overly fine temporal resolution can lead to increased
computational costs. On the other hand, overly coarse temporal
resolution may cause a loss of relevant information, thus
leading to reduced forecasting capabilities. Therefore, adapting
VAR processes to different temporal resolutions can enhance
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computational efficiency and improve forecasting capabilities
while maintaining the integrity of temporal information.

Given a VAR process at a fixed temporal resolution, the
problem of VAR forecasting at a finer temporal resolution has
a potential practical utility in diverse fields, including finance,
climatology, energy grids, logistics, and epidemiology. The
most straightforward approach in the literature is, arguably, the
use of interpolation methods; that is, estimating intermediate
trajectory values, for instance, via splines [2]. However, they
are prone to introduce biases and to overfit or to oversmooth,
due to a priori behavioral assumptions, especially when the
underlying trajectory dynamics are unknown. Moreover, many
interpolation techniques do not provide uncertainty estimates,
making it difficult to assess the reliability of the interpolated
values. Another relatively direct approach is mixed-frequency
VAR models [3]. These models allow for the integration of
variables observed at distinct temporal resolutions. However,
it is unclear how to vary the finest temporal resolution of a
given mixed-frequency VAR model by demand. Continuous-
time VAR models are conceptually different as they can extend
discrete time instances to continuous time by modeling the
trajectory as a stochastic differential equation (SDE) instead
[4, 5]. Similarly, neural SDEs [6, 7] can be trained to ap-
proximate the dynamics of a given VAR at a fixed temporal
resolution and predict at any desired temporal resolution after-
ward. However, both often carry an additional computational
cost and lack of interpretability (especially dominant for neural
SDEs) compared to ordinary VAR processes.

Contribution. Unlike existing literature, this paper presents a
novel approach for adapting a given VAR process into another
VAR process at a finer temporal resolution, while closely
preserving the forecast estimates, at the time locations given
by the original temporal resolution, and the associated credible
intervals in the long run.

Organization. To present the proposed approach in a self-
contained manner, this paper first provides a summary of the
definition and fundamental properties of VAR processes in
Sec. II. Then, Sec. III introduces the resolution grids associated
with the resolution refinement, together with the concept of
upsampling matrices, which represent mappings between any
two grids at different resolutions. The problem of finding an
adequate VAR process and upsampling matrix for a given
resolution refinement is formulated in Sec. IV, and a solution
is proposed in Sec. V. Experiments are presented in Sec. VI,
and Sec. VII concludes the paper.
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II. VECTOR AUTOREGRESSIVE PROCESSES

As outlined in Sec. I, VAR processes are statistical models
normally used to describe the joint temporal evolution of a
set of d variables. In its usual form, the VAR process collects
these variables in a vector of length d. Then, the evolution
of these variables is described as a linear function of their
previous values plus a noise disturbance, typically Gaussian.
The number of previous time instances used in the recursion
is commonly referred to as the order of the VAR process.
On the other hand, a lagged value is typically the value of
a variable in a previous time instance (relative to the current
time instance). So, in general, a pth-order VAR, or VAR(p),
refers to a VAR model that includes the p latest lagged values.
Formally,

Y=c+ A1y + A1+ +ApY—p +ug, (1)

where the matrices in {Aj,...,A4,} C R%? contain the
model parameters, y; € R? contains the variable values at
time step ¢, ¢ € R? serves as the intercept on the model and
the terms u; € R? are white Gaussian noise with covariance
3, ie., uy ~ N(0,%) and E[usu, ;] = 0 for all h € Z\ {0}.

A. Mean-adjusted form of a VAR(p) process
Without loss of generality, we can rewrite the VAR(p)
process in (1) as
yr= A1y + Asyra+ -+ Apyrp tur,  (2)

where y; := 9§; — E[g;]. This is known as the mean-adjusted
form. From now on, when we refer to a VAR process, we refer
to its mean-adjusted form unless stated otherwise.

B. Companion form of a VAR(p) process

A VAR(p) process can always be equivalently rewritten
as a VAR(1) process by appropriately rearranging its terms.
The resulting representation is known as the companion form,
and it is a convenient characterization for ensuing analytical
derivations. Formally,

Y, =TY,_ + Uy, 3)

where Y; := vec ([Ys, Yi—1, - - Yi—pr1]) € RPXL being vec
the vectorization operator, and

A Ay - A, A,
I 0 -~ 0 o0

r=[0 I - 0 0] cpixi @4
o 0 -~ I 0

where I denotes an identity matrix of adequate dimensionality,
in this case d x d, and U, := vec ([us,0,--- ,0]) € RP*L
Correspondingly, U; ~ N(0,Q), where Q := E[U,U,'] €
dexdp_

For completeness, let us define J := J, = [I,0,...,0] €
{0,1}9%9P a5 an operator that selects the first d rows. Then,
note that y, = JY;, uy = JU,, U, = J Tuy, ¥ = JQJ T,
and Q = J"XJ.

C. Stability of a VAR(p) process

A VAR process is deemed stable when the effect of the
noise disturbances dissipates over time. From the companion
form perspective, this occurs when all eigenvalues of T' lie
within the unit circle; or equivalently, when its spectral radius
p(I') = max{|vi|,- -, |yap|}, Where yi,...,7q4p are the
eigenvalues of T', is less than one.

A stable VAR process is covariance-stationary [8]. There-
fore, all terms in the sequence share the same first moment,
have a finite second moment, and exhibit shift-invariant co-
variance between any two terms in the sequence (also known
as autocovariance). From now on, all VAR processes are
assumed to be stable, with well-defined moments, unless stated
otherwise.

D. Moments of a VAR(p) process

By definition, the first moment of a VAR process in its
mean-adjusted form is zero, i.e., E[Y;] = E[Y;_p] = 0 for all
h € Z\ {0}. Regarding the second moment, let us denote the
autocovariance at shift 1 as Cy (h) := E[Y;Y,!,] € RiP>dp,
Notice that by construction Cy(h) = Cy(—h)'. Then,
multiplying (3) by Y,", we obtain

V.Y, =TY,..Y,[, +UY,,, 5)
and by taking the expectation we have

Cy(0) =TCy(1)" + 9, for h =0,
Cy(h) =TCy(h—1), for any h > 0,

(6a)
(6b)

because E[U,Y, ] is 0 for ¢ # ¢’ and equals © otherwise.
From here, given T' and 2, we can determine C'y (0) as fol-
lows: from (6b), we know that Cy (1) = T'Cy (0). Substituting
this value in (6a) leads to

Cy(0) =TCy(0)T" + Q. (7)

Theorem 1 ([9]). Let D, E and F be matrices such that one
can form the matrix product DEF, then

vec(DEF) = (F" @ D)vec(E) 8)

holds, where ® denotes the Kronecker product.

From Theorem 1, the relation in (7), and after several
straightforward algebraic steps, one obtains

Cy(0) =vec ' (I -T®T) ' vec()) , )

where, in this case, the identity matrix is of dimensionality
(dp)? x (dp)*.

Finally, the moments of the mean-adjusted form can be
easily recovered from the moments computed over the com-
panion form by recalling that y, = JY;, see Sec. II-B. That is,
E[y:] = JE[Y;] = 0 and C,(0) := E[y,y, | = JCy (0)J ".
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E. Conditional moments of a VAR(p) process

The first and second conditional moments of a VAR process
can be used as a point forecast estimate and to build the asso-
ciated credible interval, respectively. In the case of forecasting
h future instances from instance ¢, the conditional mean is

Elyin|Yi] = JE[Y;14|Yi] = JT"Y,. (10)

Following the same reasoning, the conditional covariance
matrix is

Varly, 4| Y:] := J Var[Y; 0| Y,]J
h—1

=J (Z FiQFiT> JT (1)

= Z JTiQ

where Var[y] := Cov [y, y] = E[(y — E[y])(y — Ely]) "], for
any random vector y [10, Chapter IIL.5].

Theorem 2 ([9]). If D, E, F and G are matrices of such
size that one can form the products DF and EG, then the
following identity holds,

(DRE)F®G)=

(11a)

(JTi) " (11c)

(DF) @ (EG). (12)

Corollary 2.1. Applying Theorem 2 recursively, one can
conclude that any square matrix 71" satisfies

T'oT = (T T ) (TeT)=(TeT) . (13)

Applying Theorem 1, Theorem 2, and Corollary 2.1 over
(11c) leads to

h—1

vee (Varlyr 4| Yi)) = > (JT) @ (JT) vec(2)  (14a)
= h—1
=(J®J)Yy (T®I) vec(). (14b)

I
o

7

Theorem 3 ([11]). For any square matrix 7', the finite geo-
metric series generated by 7" up to the nth term satisfies

I+T+ - +T ' =T -T)'I-T"), (15)

if I — T is invertible.

Corollary 3.1. The infinite geometric series generated by T in
Theorem 3 converges to (I —T')~! if and only if p(T') < 1.

From Theorem 3 and Corollary 2.1, we can reach the
following analytical relation

h
g(T, h) =

|
—

Trer) (16a)

O

(I rer) ' (I-Therh). (16b)
Then, from (14b), noting that vec(2) = (J ® J) T vec(X),
and making use of the auxiliary function in (16), we obtain
(J& J)g(T,h) (J@J)" vec(T)) .
a7

Var[y;, Y] = vec™!

Finally, it is worth mentioning that, with the assistance of
Corollary 3.1, it can be readily shown that the long-run condi-
tional covariance coincides with the unshifted autocovariance
of the process, i.e., limp,_,o Var[y,,|Y:] = Cy(0).

III. RESOLUTION GRID

Suppose we are given a sequence of terms and we arrange
them in a uniform grid. Then, any other sequence of terms that
can be arranged with aligned terms and with »—1 intermediate
(additional) terms is considered a sequence with an integer
resolution 7 with respect to the given sequence. For instance,

- X - - - - - - = X - = - - - — - X -
—=@===@===@===@===0 =
— x — x — Kk — Kk — * — * — * — * — *x —

the sequence of =’s has a resolution r = 4 with respect to the
sequence of x’s and a resolution » = 2 with respect to the
sequence of o’s.

A. Upsampling matrices

Suppose we have two sequences of d-dimensional values,
namely sequences A and B, where sequence A is obtained
from uniformly subsampling every rth term of sequence B.
In this setting, sequence B has a resolution r with respect to
the resolution grid given by sequence A. Now, suppose we
want to observe the last ¢ values of sequence B, but we only
have access to the last p values of sequence A. That is, at any
time instance we have partial information about the values of
sequence B.

For example, if we consider the ordered sets {y2},,cz and
{y .y = yB },.cz as the sequences B and A, respectively,
and we set p = 2, ¢ = 4 and r = 2, then, at any arbitrary
instance t,

A
- B— - yt 1 = B_ - th -
- Y3 y2t 2 Yor1 — Y —

= y{* | are equal.
and yZ_, remain

the aligned terms y2 = yi and yZ ,
On the other hand, the values of yZ
unknown.

To solve this problem, we can rely on any imputation
method that best suits the characteristics of sequences A and
B. Arguably, the most straightforward approach is to use a
linear transformation that preserves the value of the terms that
are aligned. That is,

Y, = Ma,gY,", (18)
where YA € R%*! and Y,2 € R%*! are the vectorization
of the values at hand, and M4_, g € R?*P @ R4*4 g a block
matrix such that aligned values in the resolution grid are equal,
henceforth an upsampling matrix.
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Continuing with the previous example, (18) can expand to

yi 1 0

y%—l _ | My Mo [?{4{4 } (19)
yZBth 0 1 Y1’

Yar—3 My M,y

where every M; ; € R%¢ denotes each of the unconstrained
blocks that comprise the upsampling matrix M 4_, 5.
In general, any valid upsampling matrix is constructed as

I, if imodr =0, k<pandj=k,
[Ma—gl;; =10, if imodr =0, k <pand j # F,
M; ;, otherwise,
(20)
where ¢+ = 1,...,q and j = 1,...,p are the block row and

block column indices, i ;=i —1, j:=j — 1, and k := [i/r].

B. Upsampled forecasting

Upsampling matrices can assist VAR forecasts from an
observation at a coarser resolution. To see this, let us consider
again the case discussed in Sec. III-A. At any instance ¢,
one can use the last observation of process A, i.e., Y;*, to
forecast h instances into the future of process B. That is,
E[y5. |V, 2] =E [y5,,|Ma_sY"|. Furthermore, notice
that the conditional covariance (17) is independent of the
observation it is conditioned to, and so are the credible
intervals of the forecast.

IV. PROBLEM FORMULATION

Given a VAR(p) process A, the ultimate goal is to find
a VAR(q) process B with a resolution r with respect to
process A, and an upsampling matrix between them, such
that the forecasts of processes A and B, and their long-run
conditional covariances, are approximately equal according to
some closeness criterion. Mathematically,

E [y2+rh|MA—>BY;A} ~E [yés—hn/;A] )
B ~ A
CE(0) ~ C2(0),

(21a)
21b)

for any instance ¢, horizon h and observation YtA.

Intuitively, any process B and upsampling matrix that satisfy
(21), can produce the same point forecast, in the coinciding
grid locations, and has the same long-run conditional covari-
ance as the given coarser process A. Moreover, it can also
produce r intermediate point forecasts. In this sense, process
B can be seen as a finer temporal resolution counterpart of
process A.

On the other hand, the solution to the system of equations
(21) may not lie on the set of stable VAR processes or
valid upsampling matrices. In that case, one needs to seek
an approximate solution that satisfies such constraints.

V. PROPOSED SOLUTION

To tackle problem (21a), we adopt the strategy of minimiz-
ing a cost function based on the expected Euclidean norm
of the difference between the forecasts E [ygﬂ_hDQA] and
E[y5.,,|Ma,5Y"] over all possible starting values Y,

and finite forecast horizons h = 1,..., H. The optimization
variables are thus the VAR parameters of process B and the
unconstrained entries of the upsampling matrix M4_, .

Using the analytical form of the VAR forecasts (10), one
can define an instantaneous loss between the forecasts for a
single horizon h and input observation Y, as

2
t(h, YtA) = HJPF};&YtA - JqF%TMAHBY;ﬂ 2 (22)

where only relevant dependencies for ensuing derivations are
made explicit. Such an instantaneous loss can be readily used
to compute a cost function by sample average approximation.
However, this numerical approach is limited to the number of
input observations used.

Theorem 4. The expected instantaneous loss over all input
observations, defined as L(h) = Ey (0,020 [((h, Y],
admits the following closed-form representation

L) = ||(F,Th =TT M) Lal[n,  (23)

where L4 is the lower triangular matrix in the Cholesky
decomposition of Cy (0).

Proof. Let us define S := J,I', — J, T My_,p € R¥*%
as an auxiliary matrix. Then,

L(h) =E[(h,Y)] =E[|ISY|3] (242)
=E[Y'S'SY|=E[ur(Y'S'SY)] (24b)
=u(STSE[YY'])=u(SCy(0)ST) (240
—tr (SLAL}ST) = ||SLall%. (24d)

Alternatively, from Theorem 4, one can construct an analyt-
ical cost function C (By,...,By, M) := ZhH:1 L(h). Hence,
the aforementioned optimization problem can be cast as

M {B{}{ € ag min C(Bi....B,M) (5
’ PSi=1

subject to: {B;}7_; € Gaq  (25b)

M € ./\/l(d’q’p’r)7 (25¢)

where Gy = {{Gi}l_; CR™: p(Tg) < 1} is the set
of all parameter configurations that conform a stable d-
dimensional VAR(q) model, M q 4, ) is the set of all valid
upsampling matrices, i.e., as in (20), for this setting, and
M*, By,...,B; denote the optimal upsampling matrix and
process B parameter matrices, respectively.

Note that problem (25) is nonconvex. In this work, we tackle
it by projected gradient descent, using a default setting Adam
optimizer [12] in combination with random initializations to
find well-performing local minima. Alternative optimization
methods are outside the scope of the present paper and are
left as potential future work.

Next, we aim to find the noise covariance matrix to fully
model process B. To do this, note that the relation in (21b)

can be expanded to
I, C(0)J, = J, CF(0)J,, (26a)

(Jp @ Jp) vee (C(0)) =~ (J, ® Jy) vec (CE(0)), (26b)
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Fig. 1. A single variable visualization of the experiment described in Sec. VI. The shaded areas represent one conditional standard deviation, i.e., the square

root of the diagonal elements of (17), above and below the corresponding forecast. The forecast error is defined as the absolute difference between the
upsampled forecast samples from processes B, B’, or B”, and the forecast samples from process A. The forecast error is plotted on a double logarithmic scale.

and then, by defining K, := J, ® J,, using that vec(24) =
K, vec(24), and defining ¥4 := K,(I -T4®T4) 'K,
(same for process B), it follows that

W4 vec(X4) = P vee(Xp). (26¢)

From (26¢), and using the model parameters in BY, ..., By,
the noise covariance of process B can be computed as

B = Projsg (vec_1 (\Il; lIlAvec(ZA))) , 27)

where proj._, refers to the projection onto the space of positive
semidefinite matrices, and ~T denotes the Moore-Penrose
pseudo-inverse from the left.

Closed-form solution. The problem in which p = ¢ = 1
and A; is positive semidefinite, admits an analytical solution.
Notice that in that case, Y;* = y{, V.2 = y5, and thuls,
M4, = I. Then, by solving (25) one obtains B = A7,
which satisfies (21a) for all h.

VI. EXPERIMENTS

To validate our upsampled VAR process, we perform the
following experiment. A 2-dimensional VAR(2) process A is
used as a starting point. The goal is to estimate another 2-
dimensional VAR(3) process, operating at a finer resolution
r = 3, together with an upsampling matrix of size 6 x 4.

To do so, we present three formulations, based on the
problem discussed in Sec. IV and V, which differ only in the
farthest forecasting horizon H. We examine H values of 1, 2,
and 3, resulting in processes B, B’, and B”, respectively. To
show the original process and subsequent forecasts, samples
of the coarser process A are shown up until a given time x4,
and from there onwards, the forecast samples are estimated
from this process A. These are shown in comparison with the
upsampled forecast samples from processes B, B’, and B”.
We observe that process B”, with H = 3, closely matches
the forecast samples from process A. Conversely, for process
B, with H = 1, the upsampled forecast samples closely align
with the first forecast but diverge from the subsequent forecasts
from process A. Lastly, process B’, with H = 2, exhibits an
intermediate behavior. These results are visualized in Fig. 1.

As a concluding remark, choosing a short farthest horizon
H reduces the complexity of the loss function (24) by limiting
the number of cross-products among the learnable parameters,
thereby facilitating the convergence to well-performing local
minima. However, a low value of H may lead to overfitting
and, consequently, undesirable performance. Therefore, H
should be considered as a hyperparameter of our method.

VII. CONCLUSION

This work presents the upsampled VAR process, a discrete
statistical model that increases the resolution at which any
given VAR process operates. The proposed method is validated
for multivariate time series forecasting. Future work includes
studying nonlinear imputation methods, thus extending beyond
upsampling matrices, and nonconvex optimization approaches
efficiently exploiting the analytical structure of the posed
optimization problem.
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