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Abstract—This paper presents a novel parallel computing
framework for solving constrained state estimation problems.
The proposed methodology integrates an augmented Lagrangian
formulation with a parallel Kalman filter and smoother imple-
mentation, specifically designed to optimize the primal update
step through efficient parallel computation. Experimental results
demonstrate that our approach provides a significant compu-
tational time improvement while maintaining the estimation
accuracy.

Index Terms—State estimation, parallel implementation,
Kalman smoothing, augmented Lagrangian method.

I. INTRODUCTION

State estimation plays a critical role in a wide range of
applications, including sensor fusion, trajectory recovery, and
signal processing [1]–[3]. It serves as a fundamental tool
for reconstructing the states of dynamic systems from noisy
incomplete sensor data [4]. However, a significant challenge in
state estimation lies in managing the computational cost, par-
ticularly in large-scale systems where complexity and resource
demands become important [5], [6]. To address this challenge,
we propose a novel method that integrates the augmented
Lagrangian method with parallel Kalman smoother.

Mathematically, the state estimation task is formulated as
an inference problem within a statistical framework, where
the evolution of the dynamic system’s state is governed by
constraints derived from inherent physical properties [7], [8].
Traditional Bayesian filtering and smoothing methods address
this problem by integrating prior knowledge with measurement
data to derive the posterior probability distribution of the sys-
tem’s state [9], [10]. For instance, in linear Gaussian models,
the Kalman filter and Rauch–Tung–Striebel (RTS) smoother
(also called Kalman smoother) provide efficient solutions to
this estimation problem [11]–[13].

With the advancement of parallel computing, several paral-
lelized filtering and smoothing methods have been developed
to enhance computational efficiency [14]–[16]. For example,
in [14], the Bayesian filtering and smoothing equations were
reformulated as prefix-sum operations, enabling efficient com-
putation through parallel scan algorithms [17]. The authors
of [15] proposed a method that combines variational filtering
with a parallel-iterative structure. However, these approaches

often overlook the constraints inherent in the dynamic systems,
limiting their applicability in many real-world scenarios.

Numerous optimization methods have been developed to
address constrained optimization problems, including the aug-
mented Lagrangian method [18], Peaceman–Rachford split-
ting [19], and the alternating direction method of multipliers
(ADMM) [20], [21]. These approaches are particularly ef-
fective as they decompose the original problem into smaller
subproblems by explicitly incorporating constraints into their
frameworks [20], [22]. For instance, ADMM has been used for
constrained state estimation by exploiting the Markovian struc-
ture of the model [23]. Similarly, the augmented Lagrangian
method has been successfully applied to solve joint state
estimation and parameter learning problems [24]. However,
these methods often fail to leverage the computational power
of GPUs, limiting their potential for large-scale applications.

The contribution of this paper is to present a novel par-
allel method for constrained state estimation, which inte-
grates the augmented Lagrangian method with a parallel
Kalman smoother. Specifically, for affine Gaussian systems,
we develop a parallel Kalman smoother implementation of
the primal update step that efficiently handles the update
of the primal variable within the augmented Lagrangian
method. This approach significantly reduces computational
costs while maintaining the estimation accuracy. Experimental
results demonstrate the effectiveness of the proposed method,
highlighting its potential for practical applications in large-
scale and computationally demanding scenarios.

II. PROBLEM FORMULATION

Let xt ∈ RNx be an unknown state vector of the dynamic
system and yt ∈ RNy be a noisy measurement vector at time
step t. Then, we have the following state-space model [1], [25]

xt = At xt−1 + bt + qt,

yt = Ht xt + et + rt, t = 1, . . . , T,
(1)

where At and Ht are the transition and measurement matrices,
and bt and et are the bias terms. The noises qt and rt
are independent zero-mean time-white Gaussian noises with
known covariances Qt and Rt. When t = 0, the initial state
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x0 is assumed to be Gaussian with mean m0 and covariance
P0. Also, we have the inequality constraint function

Ctxt + dt ≤ 0, (2)

where Ct is a matrix, and dt is a vector. The objective here
is to estimate the state sequence x1:T from the measurements
y1:T under the constraints.

Given the affine Gaussian model with constraints, we can
incorporate the constraint (2) into the posterior distribution
using an indicator function I:

I(Ctxt + dt ≤ 0) =

{
1, ifCtxt + dt ≤ 0,

0, otherwise.
(3)

Then, the posterior probability density can be written as

p(x1:T | y1:T ) ∝
T∏

t=1

p(xt | xt−1)

T∏
t=1

p(yt | xt)

T∏
t=1

I(Ctxt + dt ≤ 0),

(4)

where ∝ denotes proportionality and

p(xt | xt−1) = N (xt | Atxt−1 + bt,Qt),

p(yt | xt) = N (yt | Htxt + et,Rt).
(5)

Here, N (x | m,P) denotes a Gaussian probability density
function with mean m and covariance P evaluated at x. To
make the problem tractable, we aim to compute the maximum
a posteriori estimate of the state sequence x1:T . We aim to
solve the following optimization problem:

min
x1:T

1

2

T∑
t=1

∥yt −Htxt − et∥2R−1
t

+
1

2

T∑
t=1

∥xt −Atxt−1 − bt∥2Q−1
t
,

s.t. Ctxt + dt ≤ 0, t = 1, . . . , T.

(6)

In particular case where Ct = 0 and dt = 0, the
optimization problem (6) could be efficiently solved by using
Kalman smoother [4], [11], [12]. However, when the Kalman
smoother is no longer applicable (due to constraints) and
the time step T is large, the cost function in (6) becomes
computationally demanding. To address this issue, we propose
a parallel implementation for constrained state estimation in
the following section.

III. PROPOSED METHOD

The proposed method integrates an augmented Lagrangian
framework with a parallel Kalman smoother. The main idea in-
volves decomposing the minimization of the complex objective
function into an iterative sequence of computationally simpler
subproblems via ADMM, similarly to [2], [23], [26]. The
subproblem involving the optimization over the primal variable
is then implemented using the parallel Kalman smoother [14].

A. Augmented Lagrangian Method

For solving (6), we start with introducing additional vari-
able sequence v1:T and defining the augmented Lagrangian
function

L(x1:T ,v1:T ; ζ1:T ) =
1

2

T∑
t=1

∥xt −Atxt−1 − bt∥2Q−1
t

+
1

2

T∑
t=1

∥yt −Htxt − et∥2R−1
t

+

T∑
t=1

ζt
⊤(Ctxt + dt + vt)

+
ρ

2

T∑
t=1

∥Ctxt + dt + vt∥2.

(7)

Here, ζt is a Lagrangian multiplier, ρ is a parameter, and
∥x∥R =

√
x⊤Rx denotes the R-weighted Euclidean norm of

a vector x. The augmented Lagrangian method minimizes the
function L(x1:T ,v1:T ; ζ1:T ) by alternating the update steps of
the variables xt, vt, and ζt.

Given the initial value (x
(1)
1:T ,v

(1)
1:T ,η

(1)
1:T ), the iteration as-

sociating with (7) has the following steps:

x
(l+1)
1:T = argmin

x1:T

1

2

T∑
t=1

∥xt −Atxt−1 − bt∥2Q−1
t

+
1

2

T∑
t=1

∥yt −Htxt − et∥2R−1
t

+
ρ

2

T∑
t=1

∥∥∥Ctxt + dt + ζ
(l)
t /ρ+ v

(l)
t

∥∥∥2 , (8a)

v
(l+1)
t = max

(
0, −Ctxt − dt − ζ

(l)
t /ρ

)
, (8b)

ζ
(l+1)
t = ζ

(l)
t + ρ(Cx

(l+1)
t + dt + v

(l+1)
t ), (8c)

where we solve the vt and ηt subproblems for each t in
parallel. Updating x1:T via the subproblem in (8a) involves
minimization of a quadratic optimization problem, which
can be computed by the closed form solution given by the
Kalman smoother, see [23], [26], for details. Since the main
computational demand is in updating the primal variables
x1:T , we use the parallel Kalman smoother to speed up this
update step.

B. Parallel Implementation of Kalman Smoother

We first combine matrices Ht and Ct to an artificial
measurement matrix Ht, combine et and dt to a bias term
et, combine yt and (−ζt/ρ−vt) to an artificial measurement
yt, and combine Rt and I/ρ to a covariance Rt. Then we
can write

Ht =

[
Ht

Ct

]
,yt =

[
yt

−ζt/ρ− vt

]
,

et =

[
et
dt

]
,Rt =

[
Rt 0
0 I/ρ

]
.

(9)
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Hence, the solution in (8a) can be then computed by running
the augmented Kalman filter and the RTS smoother on the
following model:

p(xt | xt−1) = N (xt | Atxt−1 + bt,Qt), (10a)

p(yt | xt) = N (yt | Htxt + et,Rt). (10b)

Following [14], we can reformulate the Kalman filter in
an associative operator form by parametrizing the density
functions p(xt | yt,xt−1) and p(yt | xt−1) as

p(xt | yt,xt−1) = N (xt;Φtxt−1 + ωt,Ot),

p(yt | xt−1) ∝ NI(xt−1;ηt,Jt),
(11)

where NI(xt−1;ηt,Jt) denotes a information-form Gaussian
density with information vector ηt and information (i.e.,
precision) matrix Jt. For t > 1, the parameters are

Φt =
(
I−KtHt

)
At,

ωt = bt +Kt

(
yt −Htbt − et

)
,

Ot =
(
I−KtHt

)
Qt,

Kt = QtH
⊤
t S

−1
t ,

St = HtQtH
⊤
t +Rt,

(12)

and
ηt = A⊤

t H
⊤
t S

−1
t

(
yt −Htbt − et

)
,

Jt = A⊤
t H

⊤
t S

−1
t HtAt.

(13)

When t = 1, the values of (Φ1, ω1, O1, η1, J1) can be derived
by a Kalman filter.

We can now define an associative operator ⊗ [14] which
combines the aforementioned parameters as

(Φi,ωi,Oi,ηi,Ji)⊗ (Φj ,ωj ,Oj ,ηj ,Jj)

= (Φij ,ωij ,Oij ,ηij ,Jij),
(14)

where

Φij = Φj (I+OiJj)
−1

Φi,

ωij = Φj (I+OiJj)
−1

(ωi +Oiηj) + ωj ,

Oij = Φj (I+OiJj)
−1

OiΦ
⊤
j +Oj ,

ηij = Φ⊤
i (I+ JjOi)

−1
(ηj + Jjωi) + ηi,

Jij = Φ⊤
i (I+ JjOi)

−1
JjΦi + Ji.

(15)

If we define the t-th prefix sum as

(Φ∗
t ,ω

∗
t ,O

∗
t ,η

∗
t ,J

∗
t ) = (Φ1,ω1,O1,η1,J1)

⊗ (Φ2,ω2,O2,η2,J2) . . .⊗ (Φt,ωt,Ot,ηt,Jt),
(16)

then the filtering probability density is given as

p(xt | y1:t) = N (xt | ω∗
t ,O

∗
t ). (17)

See [14, Theorem 2] for details. Because the operator ⊗
is associative, we can use a parallel scan algorithm [17]
to compute all the prefix sums in parallel (using, e.g.,
associative_scan function in JAX [27]).

For parallelizing the Kalman smoother (i.e., RTS smoother),
as in [14], we define

p(xt | y1:t,xt+1) = N (xt;Etxt+1 + gt,Lt) , (18)

for t < T

Et = P̂tA
⊤
t+1

(
At+1P̂tA

⊤
t+1 +Qt+1

)−1

,

gt = x̂t −Et (At+1x̂t + bt+1) ,

Lt = P̂t −EtAt+1P̂t,

(19)

and for t = T

ET = 0,

gT = x̂T ,

LT = P̂T .

(20)

Here, x̂t = ω∗
t and P̂t = O∗

t are the Kalman filter means and
covariances computed via the parallel Kalman filter. We then
define an associative operator ⊗ via

(Ei,gi,Li)⊗ (Ej ,gj ,Lj) = (Eij ,gij ,Lij) , (21)

where
Eij = EiEj ,

gij = Eigj + gi,

Lij = EiLjE
⊤
i + Li.

(22)

We then write the t-th backward prefix sum as

(E∗
t ,g

∗
t ,L

∗
t ) = (Et,gt,Lt)⊗ . . .⊗ (ET ,gT ,LT ). (23)

Correspondingly, the smoother probability density can then be
computed as

p(xt | y1:T ) = N (xt | g∗
t ,L

∗
t ), (24)

where again the parameters can be computed in parallel via a
parallel scan algorithm [17].

The performance advantage of the proposed approach be-
comes increasingly evident as the dataset grows. For larger
numbers of time steps, the parallel algorithm significantly re-
duces computation time compared to the sequential algorithm.
This enhanced efficiency makes it well-suited for real-time
applications and large-scale state estimation problems. The
computation steps of the proposed method are summarized
in Algorithm 1.

Algorithm 1 Parallel Kalman smoothing augmented La-
grangian method

Input: yt, At, Ht, Ct, et, bt, dt, Qt, Rt, t = 1, . . . , T ;
parameter ρ; m0 and P0

Output: x1:T

1: while not converged do
2: x

(l)
1:T is computed in parallel by all-prefix-sums oper-

ation on (16) and (23);
3: v

(l)
1:T is computed in parallel by (8b);

4: ζ
(l)
1:T is computed in parallel by (8c);

5: end while
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IV. EXPERIMENTAL RESULTS

This section presents an experimental evaluation of the
algorithm’s performance through a simulated application.

We consider a four-dimensional linear tracking model [1],
which includes positions (x1, x2) and velocities (v1, v2). The
kind of tracking problem often arises in autonomous and semi-
autonomous shipping applications [2]. The system state is
xt =

[
x1,t x2,t v1,t v2,t

]⊤
. We simulate two sensors,

each providing measurements of the positions. To distinguish
different sensors, we denote the measurement matrix and the
covariance matrix as Ht,i and Rt,i, where i indicates the
sensor number. The measurement matrices and covariance
matrices corresponding to the two sensors are then set as

Ht,1 = Ht,2 =

[
1 0 0 0
0 1 0 0

]
,

Rt,1 =

[
0.52 0
0 0.52

]
,

Rt,2 =

[
0.42 0
0 0.42

]
.

We then construct the measurement matrix Ht,m

and covariance matrix Rt,m for the multi-sensor
dynamic system by integrating the two sensors
mentioned above. The measurement matrix is given by
Ht,m =

[
Ht,1; Ht,2

]
and the covariance matrix by

Rt,m =
[
Rt,1 0; 0 Rt,2

]
. Additionally, we impose the

constraint matrix Ct =
[
−1 0 0 0; 0 −1 0 0

]
into the model, along with the constraint vector dt =

[
0; 0

]
to ensure that displacements at every time step remain strictly
positive. The other parameters At and Qt are consistent
with [2]. The hardware employs an Intel Core i9 − 13900K
CPU and an NVIDIA RTX 4090 GPU, providing a high-
performance computing environment. The experiments were
implemented using JAX [27].

We compare the estimation results from individual sensors
and two fusing sensors in Fig. 1. It is observed that individual
sensor and multi-sensor estimation can integrate the discrete
predicted points into a smooth trajectory. To further evaluate
the performance of the proposed method, we computed the
relative error between the estimated trajectory and the true
trajectory over the entire simulation period during the algo-
rithm iterations. The relative error values during the augmented
Lagrangian iteration are presented in Table I, which compares
the results for sensor noise levels of the values 0.5 and 0.4.
The variable l represents the iteration count of our method in
Algorithm 1, and the symbol “−” indicates that the conver-
gence condition has been satisfied, halting further iterations.
The multi-sensor fusion model has a faster convergence rate,
achieving the convergence condition in only 4 iterations, and
the resulting error is lower.

Fig. 1. Comparison of multi-sensor estimation and single sensor estimation.

(a) Runtime in CPU

(b) Runtime in GPU

Fig. 2. Runtime of the Kalman smoothing augmented Lagrangian method
and its (proposed) parallel version on CPU and GPU.
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TABLE I
RELATIVE ERROR OF DIFFERENT SENSOR SETTINGS

Iteration l 1 2 3 4 5 6

Rt,1 0.1835 0.0467 0.0366 0.0365 0.0366 0.0366
Rt,2 0.1281 0.0350 0.0322 0.0323 0.0323 −
Rt,m 0.0832 0.0295 0.0294 0.0294 − −

We tested the runtime of the sequential and parallel versions
of the Kalman smoothing augmented Lagrangian method on
the CPU and GPU for time steps ranging from 102 to 105. As
depicted in Fig. 2(a), the parallel algorithm is actually slower
on the CPU than the sequential one. This is because the CPU
has too few cores to benefit from the parallelization in the
method.

As shown in Fig. 2(b), on GPU, the performance of the
proposed parallel method is significantly better than that of
the sequential method. The runtime of the parallel algorithm
on the GPU is significantly reduced, especially before the time
step count reaches the number of GPU cores (16384), showing
roughly a logarithmic growth trend until then. However, the
runtime gradually increases after the time step count exceeds
the number of GPU cores. This is because when the parallel
computational load exceeds the number of our GPU cores, the
data for parallel computation needs to be divided into several
sequential steps. Nevertheless, the overall computation speed
of the parallel method is still significantly higher than that of
the sequential algorithm.

V. CONCLUSION

This paper proposes a parallel Kalman smoothing aug-
mented Lagrangian method for constrained state estimation.
The proposed method effectively combines the augmented
Lagrangian framework with a parallel Kalman smoother
method, enabling the decomposition of complex optimization
problems into multiple computationally efficient subproblems.
Our method demonstrates significant computational efficiency
improvements in the experimental evaluations, particularly in
large-scale state estimation scenarios.
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