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Abstract—The introduction of the rotavirus vaccine in the
United Kingdom (UK) in 2013 led to a noticeable decline in
laboratory reports in subsequent years. To assess the impact
of vaccination on rotavirus transmissibility we calibrated a
stochastic compartmental epidemiological model using Sequential
Monte Carlo (SMC) methods. Our analysis focuses on estimating
the time-varying transmissibility parameter and documenting its
evolution before and after vaccine rollout. We observe distinct
periods of increasing and decreasing transmissibility, reflecting
the dynamic response of rotavirus spread to immunization
efforts. These findings improve our understanding of vaccination-
driven shifts in disease transmission and provide a quantitative
framework for evaluating long-term epidemiological trends.

Index Terms—Bayesian inference; parameter estimation; sta-
tistical signal processing; Sequential Monte Carlo; disease survel-
liance; time-varying parameters.

I. INTRODUCTION

Rotavirus is a leading cause of acute gastroenteritis in
young children resulting in significant morbidity and mortality
worldwide. Before the widespread introduction of rotavirus
vaccines, infections were responsible for a substantial number
of hospitalizations and deaths, particularly in infants and
young children. The World Health Organization (WHO) has
emphasized the importance of vaccination in reducing the
global disease burden by recommending routine immunization
as an effective public health intervention [1]. The introduction
of the rotavirus vaccine in the United Kingdom (UK) in 2013
led to a decline in general practice visits [2] and a reduction
in hospital admissions due to rotavirus-related gastroenteritis
[3]. Despite this success, the long-term impact of vaccination
on the dynamics of rotavirus transmission remains an area of
active research. The interaction between vaccination coverage,
waning immunity, and seasonal transmission patterns presents
a difficult epidemiological challenge [4].

A simple approach to evaluating the impact of rotavirus
vaccination compared expected incidence trends with observed
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case reductions. For example interrupted time-series models
outlined shifts in trends pre- and post- vaccine [5]-[7]. Metrics
such as incidence rate ratios (IRRs) allow for the quantification
of changes in infection rates by offering a straightforward
comparison [2], [8]. Additionally, change point detection
methods have been applied to identify critical time periods
where transmission dynamics shift [9].

The Susceptible, Infected and Recovered disease model [10]
and its extensions have been widely used when modelling
rotavirus transmission [11]-[17]. By calibrating these models
to empirical data using Bayesian methods, estimates can be
made of key epidemiological parameters such as the basic
reproduction number and growth rate [18]-[20]. See [12],
[13], [21] for examples of Bayesian calibration of rotavirus
transmission. Incorporating time-varying parameters is crucial
when calibrating these models with multiple years worth of
data as disease transmission dynamics evolve over time due to
factors like vaccination and seasonality [22]. Static parameters
may not accurately reflect these evolving conditions result-
ing in biased estimates. Time-varying parameters allow the
model to adapt to these changes. Bayesian inference can be
performed using Markov Chain Monte Carlo (MCMC) [23]
and Sequential Monte Carlo (SMC) methods [24]. The particle
filter (PF) [25] is a SMC method that is well-suited for mod-
eling disease dynamics that contain time-varying parameters
within the Susceptible, Infected, and Recovered framework
[26]-[28]. By sequentially updating parameter estimates as
new data become available, PFs effectively capture changes
in disease transmission. Bayesian methods provide a natural
framework for incorporating prior knowledge and handling
uncertainty in parameter estimates which is especially useful
for assessing the impact of vaccination programs over time.

This study contributes to the understanding of rotavirus
transmission dynamics by providing a detailed, data-driven
analysis of time-varying parameters before and after the in-
troduction of the rotavirus vaccine in the UK. We provide a
framework for calibrating a stochastic compartmental model
with SMC methods and offer new insights into the impact of
vaccination on disease spread. More specifically, we highlight
key periods of transmissibility fluctuations and demonstrate
the effectiveness of this approach for assessing vaccination
interventions on long-term trends.
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The structure of this paper is organized as follows: Sec-
tions II and III define the PF and PMCMC algorithms,
respectively. Section IV outlines the epidemiological model
used in the analysis as well as the data used and numerical
results. Concluding remarks are presented in Section V.

II. PARTICLE FILTER

We define a state transition model

Xe|xp—1 ~ f(xe|x4-1,0), (D

and an observation equation

yilxe ~ g(yelxs, 0), 2

where 0 represents the parameters with D dimensions.

The goal of the PF is to estimate the posterior distribution
of the latent states p(xi.¢+|y1.t) given the sequence of obser-
vations y1.;. The PF approximates the posterior distribution
recursively over time using a set of weighted particles. A
particle is a weighted sample from the distribution of latent
states. The PF works in two main steps: prediction and update.

At time t = 0, a set of IV, particles, x((f) forj=1,..., Ny,
is drawn from an initial distribution ¢(xg), typically chosen
to be the prior distribution p(xg). Each particle is assigned an
equal weight:

b1
w) = —. 3)

These particles and their associated weights form the initial
approximation to the posterior distribution:

p(xolyo) = Y wid(xo — x{), “)
j=1

where 0(+) is the Dirac delta function representing the particle
locations.

At each subsequent time step ¢, particles are propagated
based on the state transition model. The new particles xij )
are drawn from a proposal distribution, typically the predicted
state based on the previous particle:

x) ~ q( ). (5)
The prediction step incorporates the state dynamics to prop-
agate the particles forward. Each particle is then associated
with a new weight W,EJ ) that reflects how well the particle’s
state matches the observed data.

The weight of each particle is updated based on the like-
lihood of the observation y; given the particle’s state XEJ).
Using Bayes’ theorem, the new weight is computed as:
vl
a(x” 1x{1, v0)

ng) = Wg)l )

(6)

where p(yt|X§j )) is the likelihood of the observation, y;
given particle state x\’) and ¢(x\”|x\?, y,) is the proposal

distribution.

When ¢t = 1, the weights are updated as:
Wi _ PO e
a(x|y1)
To ensure that the weights sum to 1, the weights are
normalized:

(7

ng)
Z;'V:ml WEJ)
This normalization step is essential for ensuring the weights
can be used to approximate expectations w.r.t. p(X1.¢|y1.¢)-

If the weights of the particles become too concentrated
(i.e., a small number of particles have significant weights),
resampling is performed to avoid degeneracy (i.e., the problem
where all but one particle has negligible weight). Resampling
selects particles according to their normalized weights and
duplicates particles with high weights while discarding those
with low weights. The resampling step ensures that the set
of particles continues to provide a good approximation to the
posterior distribution.

After resampling, the estimate of the posterior distribution
is given by the weighted sum of functions of the particles.
For example, the expected value of a function f(x;) under
the posterior can be computed as:

w0 =

(®)

Nz
fr=Y"wP ). ©)
j=1
IITI. PARTICLE-MARKOV CHAIN MONTE CARLO

Particle Markov Chain Monte Carlo (PMCMC) is an ex-
tension of the PF that enables sampling from the posterior
distribution p(x1.4,0 | y1.t), including both the latent states
x1.¢ and the parameters @ of the model. To perform PMCMC,
we need to evaluate the likelihood of the observed data, which
is typically a challenging task in high-dimensional or non-
linear settings. The PF provides a way to approximate this
likelihood efficiently, which is then used in conjunction with
MCMC methods. The log-likelihood is central to the PMCMC

framework. Given a set of observations y1.: = {y1,...,¥t}
the log-likelihood function is defined as
1 L
log p (y1.7]60) ~ log(+— Y wi), (10)

where wij) are the unnormalized importance weights associ-
ated with the j-th particle (as is described in (6)).

In MCMC methods, the accept/reject step is fundamental
to ensuring that the chain explores the parameter space cor-
rectly and converges to the desired posterior distribution. The
accept/reject decision is based on the ratio of the likelihood
of the proposed state to the current state. In the context of
PMCMC, the log-likelihood is used to guide the sampling of
the model parameters 8. Given a proposed set of parameters 6*
and the corresponding set of latent states x7.;, the acceptance
ratio a for the accept/reject step is computed as

_ D(y1:4|6")p(67)

, 1
$1:10)0(0) o
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where p(y1.|0) and p(y1.4|0*) are the likelihoods approxi-
mated at the current and proposed parameter values, respec-
tively and p(@) and p(@*) are the prior distributions for the
model parameters.

1V. EPIDEMIOLOGICAL MODEL

The model used in this study is the same as provided in
[26] which is adapted from the original study [27]. The model
follows a continuous-time compartmental SEIR framework,
which describes the dynamics of disease transmission by
categorizing the population into susceptible (5), exposed (F),
infected (/), and recovered (1) compartments. However, for
practical implementation and inference, the model is repre-
sented in discrete time, allowing for numerical approximation
of the differential equations. The transition between compart-
ments is governed by a set of stochastic differential equations,
incorporating both deterministic transmission dynamics and
stochastic variability in the transmission rate. The cumulative
number of new infections (Z) is updated weekly, resetting
at regular intervals to align with observational data. This
discrete-time formulation facilitates parameter estimation us-
ing p-MCMC while preserving the underlying continuous-time
disease dynamics. The full model is presented as:

s I(t)

R R (12
W _ sy ke, (13)
S = kB() 10, (14)
= a1) (15)
% — KE(t) — Z6(t mod 7), (16)
% = odW, (a7

= eolt), (18)

where Z represents the cumulative number of new infections
recorded over a seven-day period, and z is the log-transformed
transmissibility. The Dirac delta function, §(¢ mod 7), resets
Z to zero at weekly intervals (¢ mod 7 = 0). The latent and
infectious periods are given by % and %, respectively. The
transmission rate J undergoes Brownian motion in the log
scale with fluctuations governed by o. These equations are
discretized using fourth-order Runge-Kutta as in [20]. We use
the same likelihood described in [26]:

L(Z]yr, 7) = N (log(yt),log(Z/10), 1), (19)

which describes the observations as being log-normally dis-
tributed. The parameters we are inferring are 8 = {k,~y,0,7}.
The effective reproduction number, Ry, is computed by:

Ry = RoS(t), (20)

where Ry = ]\%

The growth rate r of the epidemic can be approximated
from the effective reproduction number (20). One common
approximation is given by:

-1
p JE D) @1)
1+«
where « is a factor related to the exposed period defined as
« = 1. Substituting « into the equation:
R —1
r:kz(lJrz). (22)
Assuming a short latent period, k > v, it simplifies to:
rak(R—1). (23)

A. Data

The data used in this paper comprises confirmed cases of
rotavirus from 2004 to 2016 and can be seen in Figure 1. The
black dashed line is when the vaccine was introduced. The
periodicity of confirmed cases is clearly visible, with cases
rising during the winter. However, peaks in the years after the
vaccine was introduced are remarkably smaller than before.

B. Results

The analysis performed in this section uses the light blue
shaded region of Figure 1. Particle-MCMC was used to fit
the epidemiological model in Section IV to the rotavirus data.
The Bayesian inference framework LibBi was used [20], [29]
and run on a standard 8 core laptop. The sampling process
took roughly seven hours. We employed the same adaption
methods as described in [26] which helped the efficiency of the
sampling process. Figure 2(a) shows the inferred observations
from the PF closely capture the seasonal trends in rotavirus
incidence, reflecting the periodicity observed in the raw data.
This form of a posterior predictive distribution serves as a
crucial validation of the inference process by demonstrating
that the model captures key patterns in the observed data.
Figures 2(b), (c) and (d) show the time-varying transmutability
parameter, growth rate and reproductive number, respectively.
These plots show distinct epidemiological patterns. Prior to
vaccination, there is a recurrent seasonal trend, peaking around
March during the spring months. After the vaccine rollout,
these peaks become progressively lower, indicating a sustained
reduction in transmission. This pattern is mirrored in the
time-varying growth rate, which exhibits a more pronounced
seasonal decline post-vaccination, suggesting a weakening of
outbreak intensity.

V. CONCLUSIONS AND FUTURE WORK

This study analyzed the impact of rotavirus vaccination in
the UK by estimating the time-varying transmissibility, growth
rate, and reproductive number using a stochastic compart-
mental model calibrated with SMC methods. Our findings
highlight clear reductions in transmissibility and outbreak in-
tensity following vaccine introduction, aligning with observed
declines in seasonal case peaks. These results reinforce the
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Fig. 1: Weekly rotavirus counts in the United Kingdom from 2004-2016. The introduction of the vaccine in 2011 is shown by
the black dashed line. The shaded blue section is the portion of the data used in the analysis in Section IV-B.
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Fig. 2: The results produced from the inference process. (a) The posterior predictive distribution from the PF with the true
counts represented by red crosses. (b) time-varying transmissibility parameter (c) time-varying growth rate. (d) time-varying
reproductive number with the horizontal red line indication a number of 1. In all plots the solid blue line is the median of the
sample, while the 50% and 95% confidence intervals presented by the shaded regions.
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effectiveness of vaccination in altering disease transmission
dynamics and mitigating large seasonal outbreaks.

A potential avenue for future work could sensibly extend
this framework by using a hierarchical model that accounts
for multiple age groups, as seen in [12], [13], [16], [17], and
incorporate age-structured contact patterns to refine transmis-
sion dynamics. A higher dimensional model could potentially
need a higher performance PF as seen in [30].

Beyond its epidemiological benefits, rotavirus vaccination
has substantial economic implications [2], [3], [21], [31]. An
active area of research focuses on quantifying the economic
benefits of vaccine roll-out, particularly in terms of healthcare
cost savings and broader societal impacts. Incorporating a
financial aspect to the model presented in this paper would
be an interesting direction for future work.
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