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Abstract—This paper introduces a novel Complex Variational
AutoEncoder architecture leveraging complex-valued represen-
tations with a single latent channel for radar target detection.
Unlike conventional real-valued VAEs, which require two latent
channels to encode complex-valued data, the proposed approach
directly operates in the complex domain, preserving the inherent
structure of radar signals. By maintaining phase information
and more accurately modeling the underlying data distribution,
the complex-valued VAE enhances the separation of latent
representations, leading to improved target discrimination.

Experimental results demonstrate the effectiveness of the
proposed CVAE in various clutter and noise scenarios against
traditional radar detectors, such as the Matched Filter and
Adaptive Normalized Matched Filter, and real-valued VAE.

Index Terms—Variational AutoEncoder, complex-valued neu-
ral networks, radar target detection

I. INTRODUCTION

Detecting radar targets is a key challenge in signal process-
ing [1], requiring accurate detection of targets amidst complex
and heterogeneous background noise. Classical approaches,
including the Matched Filter (MF), Normalized Matched Filter
(NMF), and adaptive techniques like AMF [2], Kelly [3],
and ANMF [4], are highly effective under Gaussian noise as-
sumptions. However, their performance declines considerably
in practical scenarios, where clutter exhibits more intricate
statistical behaviors.

Recent progress in Deep Learning [5] has opened new
possibilities for improving radar detection. Variational Au-
toEncoders (VAEs) have emerged as powerful tools for Out-
Of-Distribution (OOD) detection [6], [7], thanks to their
ability to model data distributions [8]. While VAEs have
been successfully applied to anomaly detection in various
domains including acoustic signal processing [9], medical
imaging [10], and fault diagnosis in high-voltage equipment
[11]—their potential for radar-based target detection remains
largely unexplored.

In this paper, we extend the use of VAEs for radar detection
[12] by introducing a complex-valued VAE (CVAE). Unlike
real-valued VAEs, which require two latent channels to encode
complex radar data, the proposed model directly operates
in the complex domain, preserving phase information and
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enhancing latent space separation. Recent works have demon-
strated the benefits of complex-valued VAEs in generative
modeling for speech enhancement and object discovery [13]–
[15]. In particular, complex recurrent VAEs improve temporal
dependencies in speech resynthesis [13], while complex con-
volutional recurrent VAEs better capture phase-aware struc-
tures in noisy environments [14].

Beyond speech applications, complex-valued representa-
tions have been explored for unsupervised object discov-
ery, demonstrating improved feature binding through phase
alignment [16]. Additionally, contrastive learning techniques
applied to complex-valued autoencoders have led to struc-
tured latent representations beneficial for segmentation and
disentanglement tasks [15]. Moreover, complex-valued neural
networks (CVNNs) have demonstrated both theoretical and
practical advantages for radar signal processing, particularly
in polarimetric SAR (PolSAR) classification, where they out-
perform real-valued networks even under capacity-equivalent
constraints. This superiority is attributed to their ability to bet-
ter exploit phase information, which is crucial for improving
classification accuracy in complex radar data [17].

Building on these advances, we propose a CVAE tailored for
radar target detection, leveraging complex-valued latent spaces
to better handle clutter and improve robustness in adverse
conditions. The paper is structured as follows: Section II re-
views the statistical models and classical detectors commonly
used in radar target detection. Section III details the proposed
CVAE architecture and detection strategy. Section IV presents
training and evaluation results, comparing the CVAE against
Real-valued VAE and traditional detectors under various noise
conditions. Finally, Section V concludes the paper, discussing
the advantages of CVAEs in radar detection and future research
directions.

Notations: Matrices are in bold and capital, vectors in
bold. For any matrix A, AT is the transpose of A and AH

is the Hermitian transpose of A. I is the identity matrix.
N (µ,Γ) and CN (µ,Γ) are respectively real and complex
circular Normal distribution of mean µ and covariance matrix
Γ. The matrix operator T (.) is the Toeplitz matrix operator
ρ → {T (ρ)}i,j = ρ|i−j|. The symbols ⊙ and ⊘ denotes
the Hadamard element-wise product and division between
vectors, respectively. The operators |.|◦, .◦α and log◦ represent
the Hadamard element-wise absolute value, power to α and
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logarithm of a vector, respectively. The symbols Re and Im
denote the real and imaginary parts of a complex number.

II. CLASSICAL RADAR DETECTION METHODS

A. Hypothesis Testing and Signal Model

In adaptive radar detection, the objective is to identify the
presence of a complex signal αp ∈ Cm within a received
observation z, which is contaminated by clutter noise c and
an additive white Gaussian noise component n, characterized
by a covariance matrix σ2I and independent from c. In the
case of a point-like target, this detection problem is formulated

as a binary hypothesis test:
{
H0 : z = c+ n,
H1 : z = αp+ c+ n,

where

z represents the received signal, α is an unknown complex-
valued target amplitude, and p is the known steering vector.
In a homogeneous clutter setting, c follows a circular complex
Gaussian distribution CN (0,Σc). In a heterogeneous or par-
tially homogeneous environment, a compound Gaussian model
is used, where c =

√
τg, with g ∼ CN (0, τΣc), conditioned

on a texture parameter τ ∈ R+. The parameter τ captures
variations in power across different radar cells and is assumed
to have an expectation of E[τ ] = 1 for simplicity. The Signal-
to-Noise Ratio (SNR) under hypothesis H1, after applying a
whitening transformation, is given by SNR = |α|2 pH Σ−1 p,
where Σ = Σc + σ2 I where Σ = Σc + σ2I. Throughout this
work, the power ratio r = Tr(Σc)/(mσ2) between clutter and
thermal noise is fixed to 1.

In a thermal noise-free environment, optimal detection
strategies exist for both the homogeneous and partially homo-
geneous cases, along with their adaptive counterparts. When
the noise is Gaussian and the environment is homogeneous,
the classical Matched Filter (MF) provides the optimal test:

ΛMF (z) =
|pHΣ−1z|2

pHΣ−1p
≷ λ . (1)

When both clutter and thermal noise share an unknown
common covariance up to a scale factor, the scenario is
classified as partially homogeneous noise. In such cases, the
Normalized Matched Filter (NMF), which remains invariant
to this unknown scale factor, is a suitable detector [4]:

ΛNMF (z) =

∣∣pHΣ−1z
∣∣2(

pHΣ−1p
) (

zHΣ−1z
) ≷ λ . (2)

In scenarios where the covariance matrix is unknown but the
noise remains Gaussian, adaptive two-step detectors are often
used. These include the Adaptive Matched Filter (AMF-SCM)
[2] and the Adaptive Normalized Matched Filter (ANMF-
SCM) [18], where the true covariance matrix Σ is replaced
by the Sample Covariance Matrix (SCM), estimated from
secondary independent samples:

Σ̂SCM =
1

K

K∑
k=1

zk z
H
k , (3)

where zk are clutter-only observations. When the clutter
follows a compound Gaussian model (ck =

√
τkgk), the false

alarm regulation and detection performance of AMF-SCM and
ANMF-SCM degrade significantly. A widely used alternative
is the Tyler Adaptive Normalized Matched Filter (ANMF-FP),
where the covariance matrix in (2) is estimated using the robust
Tyler estimator built on secondary data zk’s [19], [20]:

Σ̂FP =
m

K

K∑
k=1

zHk zk

zHk Σ̂
−1

FP zk
. (4)

The NMF and ANMF-FP are particularly effective in sce-
narios with impulsive clutter, as they ensure robustness and
texture invariance under H0 conditions, unlike the Gaussian-
based detectors (MF, AMF-SCM, ANMF-SCM), which fail
in such cases [21], [22]. However, these detectors can suffer
when additive thermal noise is present, as this affects the
texture invariance of the Tyler estimator, impairing constant
false alarm rate (CFAR) regulation. In these conditions, op-
timal detection schemes remain an open research problem.
Importantly, when the clutter follows a Gaussian plus thermal
noise model, classical detectors such as MF, AMF-SCM, and
ANMF-SCM remain valid, as the sum of Gaussian-distributed
noise components is still Gaussian. However, when clutter
deviates from the Gaussian assumption, the limitations of
these methods become evident. To tackle these challenges, we
introduce a CVAE detector, leveraging the strengths of deep
learning and complex-valued representations to effectively
model cluttered radar environments with additive thermal noise
which improves the latent feature representation and target
discrimination.

III. FROM REAL-VALUED TO COMPLEX-VALUED
VARIATIONAL AUTOENCODERS FOR RADAR SIGNAL

PROCESSING

To overcome the statistical model of clutter plus thermal
noise, Variational AutoEncoders (VAEs) are powerful gener-
ative models that have demonstrated significant potential in
radar target detection and anomaly detection. By learning a
probabilistic latent space representation of the data, VAEs en-
able efficient encoding, reconstruction, and synthesis of radar
signals, making them particularly well-suited for modeling
complex data distributions.

To address these limitations, we propose a transition from
real-valued VAEs to complex-valued VAEs, allowing direct
processing of complex radar signals within a single latent
channel. This approach not only maintains the integrity of
the phase information but also enhances the separation of
data in the latent space, and in term of reconstruction leading
to improved target detection performance. In this section,
we introduce our complex-valued VAE architecture and its
advantages for radar applications.

A. Proposed Complex-Valued VAE Architecture

Our proposed VAE architecture is specifically designed to
process and reconstruct complex radar signals while preserving
their intrinsic structure. Unlike conventional real-valued VAEs,
which require two separate latent channels to encode real
and imaginary components, our model operates directly in the

2513



Fig. 1: Complex-Valued VAE network architecture

complex domain, thereby maintaining the phase information
crucial for radar signal processing.

The architecture consists of an encoder and a decoder, each
composed of complex convolutional layers. These layers are
adapted to handle complex-valued inputs, enabling efficient
feature extraction while maintaining the consistency of ampli-
tude and phase relationships throughout the network.

1) Complex-valued Encoder: The encoder maps the high-
dimensional complex radar signals into a lower-dimensional
latent representation through a series of complex-valued con-
volutional layers. Each layer includes complex batch normal-
ization and non-linear complex activation functions such as the
complex-valued ReLU (CReLU). The downsampling process
is performed via complex-valued pooling layers which select
the complex-valued components that have the largest magni-
tude, ensuring that both magnitude and phase information are
preserved during feature extraction.

At the final stage, the output is passed through fully con-
nected layers that generate:

• The mean vector µ ∈ Cq ,
• The variance vector σ◦2 ∈ Rq+,
• The pseudo-variance term δ ∈ Cq , which allows greater

flexibility in modeling the latent space.
2) Complex Reparameterization Trick: To enable efficient

sampling in the complex latent space while maintaining dif-
ferentiability, we introduce a novel reparameterization trick.
Given the estimated parameters µ, σ, and δ, the latent variable
z is sampled as follows:

z = µ+ kr ⊙ ϵr + iki ⊙ ϵi, (5)

where:

 kr = 1√
2
(σ + δ)⊘ (σ +Re(δ))

◦ 1
2 ,

ki = 1
2

(
σ◦2 − (|δ|◦)◦2

)◦ 1
2 ⊘ (σ +Re(δ))

◦ 1
2

.

Here, ϵr and ϵi are identically and independently distributed
according to standard Gaussian noise vectors N (0, I).

To ensure numerical stability and enforce the constraint
|δ|◦ < σ, the pseudo-variance is reparameterized as:

δ = α⊙ σ , (6)

where each component of the q-vector |α|◦ is less than 1. This
constraint is set using:

αr = Re(δ)⊘ (1 + |δ|◦) , αi = Im(δ)⊘ (1 + |δ|◦) , (7)

ensuring that the magnitude of δ remains bounded.

3) Complex Decoder: The decoder reverses the encoding
process by reconstructing the radar signal from the latent
representation z. It employs transposed complex convolutional
layers combined with complex activation functions to pro-
gressively upsample and restore the original radar signal. The
final output layer applies a complex convolution operation to
generate the reconstructed complex-valued signal ẑ ∈ CN .

4) Modified Complex VAE Loss Function: The VAE is
trained by minimizing the evidence lower bound (ELBO),
which is modified to account for the complex nature of the
latent space. The total loss function is defined as:

LVAE = Lrec + βDKL , (8)

where the reconstruction loss Lrec is computed as:

Lrec = ∥z− ẑ∥2 . (9)

and where the KL divergence loss DKL is adapted for the
complex latent space:

DKL = ∥µ∥2 + 1T
q

(
σ − 1

2
log◦

(
σ◦2 −

(
|δ|◦

)◦2))
. (10)

The hyperparameter β ∈ R+ regulates the trade-off between
reconstruction accuracy and latent space regularization.

This complex-valued VAE architecture ensures efficient
representation learning while preserving the fundamental prop-
erties of radar signals. The introduction of the pseudo-variance
term δ allows for finer control over the latent distribution,
enhancing the model’s ability to disentangle meaningful radar
features.

B. Detection Strategy and False Alarm Regulation

During inference, the VAE is tasked with analyzing radar
signals that may contain targets. Since it has been trained
exclusively on clutter and noise, it struggles to accurately
reconstruct inputs containing targets, leading to an increased
Mean Squared Error (MSE) in such cases. Consequently, the

detection criterion is established as Lrec(z, ẑ)
H1

≷
H0

λVAE, where

λVAE is a threshold determined from a validation dataset
composed solely of clutter and noise, distinct from the training
set. This threshold is set to maintain a predefined Probability of
False Alarm (PFA) [23], ensuring system reliability in varying
noise conditions. By leveraging its ability to learn intricate
noise distributions, the CVAE provides a robust detection
strategy while preserving strict false alarm regulation.

IV. RESULTS EXPERIMENTATIONS

This section evaluates the detection performance of the
CVAE in comparison to classical radar detectors, namely
AMF-SCM, ANMF-FP, and a RVAE. The experiments are
conducted under different noise conditions, including corre-
lated Compound Gaussian Noise (cCGN), correlated Gaussian
Noise with Additive White Gaussian Noise (cGN + AWGN),
and correlated Compound Gaussian Noise with Additive White
Gaussian Noise (cCGN + AWGN). Performance is assessed in
terms of Probability of Detection Pd as a function of SNR,
with a fixed false alarm probability Pfa = 10−2.
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(a) cGN + AWGN (b) cCGN (c) cCGN + AWGN

Fig. 2: Detection performance under different noise for Doppler bin d = 0 (Pfa = 10−2, ρ = 0.5, µ = 1, m = 16, K = 32).

A. Signal and Noise Characteristics

The target echo is modeled as α =
√

SNR e2jπϕ/
√
m,

where ϕ ∈ [0, 1], and the steering vector is given by

p =
(
1, e2jπd

1
m , . . . , e2jπd

m−1
m

)T

for m = 16 bins, where
d representing the target normalized Doppler bin index. The
clutter covariance matrix follows Σc = T (ρ) with ρ = 0.5,
while texture components τ and τk are sampled from a Gamma
distribution Γ(µ, 1/µ) with µ = 1. For adaptive detectors, the
covariance estimation uses SCM and Tyler estimators with
K = 2m independent secondary samples.

B. VAE Training Configuration

The VAE is trained on clutter plus noise Doppler profiles
for each noise scenario. The dataset DH0

consists of 15, 000
samples, two-thirds of which are allocated to training and the
remaining third for validation. Training is performed over 50
epochs using the Adam optimizer [24] with a learning rate of
10−3. The loss function LVAE incorporates a regularization
parameter of α = 102, and the latent space dimension is
set to 12. Once trained, detection is performed using the
reconstruction loss Lrec, with Pfa = 10−2 determined from
a validation set of 5, 000 independently generated samples.

C. Detection Performance for Zero Doppler Bin

Fig. 2 illustrates the detection results for Doppler bin d = 0
under various noise conditions.

In the cGN + AWGN scenario (Fig. 2-(a)), the complex-
valued VAE exhibits similar performance to the real-valued
VAE and the MF, demonstrating strong detection capabilities
in Gaussian noise conditions. Under cCGN (Fig. 2-(b)), the
complex-valued VAE remains competitive but lags behind the
ANMF-FP at lower SNRs. However, as the SNR increases, its
performance converges towards that of ANMF-FP, suggesting
that while initial detection may be challenging, the model
adapts well at higher SNR levels. In the cCGN + AWGN
scenario (Fig. 2-(c)), the Complex VAE demonstrates superior
robustness, surpassing ANMF-FP and AMF-SCM. This high-
lights its ability to effectively handle highly structured clutter
environments with thermal noise contamination.

(a) cGN + AWGN

(b) cCGN

(c) cCGN + AWGN

Fig. 3: Pd-SNR-Doppler bin map comparing CVAE to RVAE,
AMF and ANMF, under different noise scenarii.

D. Detection Performance Across Doppler Bins

To provide a comprehensive evaluation, we analyze detec-
tion performance across all Doppler bins.

In cGN + AWGN (Fig. 3-(a)), both the Complex VAE
and real-valued VAE consistently outperform adaptive detec-
tors such as ANMF-FP and AMF-SCM, indicating resilience
across varying Doppler conditions. For cCGN (Fig. 3-(b)), the
Complex VAE performs similarly to the ANMF-FP at mid-
to-high SNRs and surpasses AMF-SCM across all Doppler
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bins, confirming its robustness in non-Gaussian environments.
Under cCGN + AWGN (Fig. 3-(c)), the Complex VAE out-
performs all adaptive detectors, including ANMF-FP, across
the entire Doppler spectrum, reinforcing its effectiveness in
handling structured clutter and thermal noise mixtures.
E. Comparison Between Complex- and Real-Valued VAEs

A key finding is that the CVAE and RVAE achieve compa-
rable detection performance. However, the fundamental dif-
ference lies in the latent space representation: the CVAE,
by directly operating in the complex domain, enables better
separation between target and clutter distributions (see Figure
4). In contrast, the RVAE, constrained by its two-channel
encoding, does not provide the same level of separation in
the latent space. These results indicate that while both VAEs
are viable alternatives to classical detectors, the CVAE offers
a more structured and discriminative latent representation,
making it particularly suited for radar signal processing.

(a) RVAE SNR=10 (b) CVAE SNR=10

(c) RVAE SNR=20 (d) CVAE SNR=20

Fig. 4: Latent space separation CVAE vs RVAE

V. CONCLUSION

This work introduces a complex-valued Variational AutoEn-
coder for radar target detection, leveraging complex-valued
representations to improve feature extraction in challenging
noise environments. Comparative evaluations against AMF-
SCM, ANMF-FP, and a real-valued VAE highlight that the
Complex VAE achieves performance comparable to the real-
valued VAE, with the primary difference being the structure of
the learned latent space. These works demonstrate the potential
of complex-valued deep learning for radar detection and sug-
gest further exploration of hybrid real-complex architectures to
optimize latent space interpretability and detection accuracy.
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