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Abstract—Vector autoregressive (VAR) models have long been
valued for their comprehensive representation capabilities in
signal processing. However, this requires learning a matrix of
parameters that grows with the number of individual time
series for various time lags, making the overall estimation of
a VAR model from data prohibitively complex. To address this
challenge, graph, and topological signal processing approaches
have introduced more structured models, such as graph VAR (G-
VAR) and simplicial complex VAR (SC-VAR), which reduce the
complexity by assuming that VAR models are derived from the
polynomial graph and simplicial filters, respectively. In this work,
we generalize structured VAR models to operate over abstract
cellular complexes, allowing more flexible structural represen-
tation, which we refer to as cellular complex VAR (CC-VAR).
Moreover, we propose an online learning algorithm to learn
the parameters of CC-VAR. Our theoretical and experimental
results demonstrate that the CC-VAR model effectively represents
multivariate time series data while significantly reducing the
number of parameters compared to the current state-of-the-art
approaches.

Index Terms—Vector autoregressive model, topological signal
processing, abstract cellular complex, online learning.

I. INTRODUCTION

Multivariate time series data generated from real-world
networks are amenable to being represented using Vector
Autoregressive (VAR) models [1]–[4] due to their ability to
capture complex time-lagged interactions in a tractable manner
[5], [6]. However, VAR models typically ignore the inherent
higher-order structure present in many real-world networks,
such as those found in water distributions, road transportation,
and power distribution systems, including multiway dependen-
cies. In standard VAR models, the parameter count is N2P
(where N is the number of time series and P is the time lag),
which can become prohibitive as N increases. Incorporating
network-like structures into VAR models introduces valuable
inductive biases, leading to more accurate modeling and sig-
nificantly reducing the number of parameters. In this work, we
incorporate a cellular complex-based network structure into the
model.

Although methods such as factor modeling [7], shrinkage
estimators [8], and low-rank transformation matrices [9] have
been proposed to address over-parameterization in VAR mod-
els, they often overlook the physical structure and higher-
order dependencies inherent in many real-world networks. The
rise of graph and topological signal processing has enabled
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G-VAR and SC-VAR models [10], [11], which incorporate
network structures into the VAR framework using convolution-
based filters over graphs and simplicial complexes, reduc-
ing the parameter count independent of vector dimension.
However, the G-VAR model [10] is limited to node-level
signals and overlooks higher-order relationships (e.g., edge
flows) present in real datasets, while the SC-VAR model
[11] may be unsuitable for networks not conforming to more
complex structures, such as rectangular water pipelines and
online learning of those models in the literature includes
redundant parameters. Moreover, real-world datasets are often
non-stationary, and sufficient batch data may not always be
available (e.g., fluctuating users in wireless networks). To
address this, the TopoLMS algorithm [12] operates over a
single dimension of a cellular complex to minimize prediction
error at each point. In contrast, this work introduces an online
algorithm with fewer parameters that minimizes error over a
time window, leveraging data across multiple dimensions to
improve stability in multi-step-ahead predictions.

In this work, we introduce an extension of existing mod-
els to cellular complexes, called the cellular complex VAR
(CC-VAR) model. The CC-VAR model applies to a wider
range of network structures than simplicial models, as cellular
complexes, encompass simplicial complexes while enabling
online parameter learning. Additionally, the CC-VAR model
reduces the computational complexity encountered in the SC-
VAR model by lowering the number of operations.

This paper is organized as follows: Section II introduces
preliminary notation and mathematics, Section III introduces
the CC-VAR model, Section IV describes the online learning
algorithm, and Section V examines the model’s performance
on real-world data.

II. PRELIMINARIES

A. Vector Autoregressive Models
A P -order VAR model represents the evolution of a multi-

variate time-varying process xt ∈ RN as a linear combination
of its P past realizations xt−1, . . . ,xt−P :

xt =

P∑
p=1

Wpxt−p + εt, (1)

where Wp ∈ RN×N represents the parameters for the
temporal lag p, with [Wp]ij capturing the spatio-temporal
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Fig. 1: An example cellular complex with 8 0-cells (nodes),
10 1-cells (edges), 2 2-cells (polygons) and signals defined
over them

dependency between [xt−p]j and [xt]i. The variable εt de-
notes model uncertainty, typically assumed to be zero-mean
Gaussian. The VAR model in (1) faces limitations in real-
world networks due to a high number of parameters, especially
when there are many time series, limited data samples, or
rapidly changing environments. To address this, we use the
cellular complex structure as an inductive bias, capturing more
dependencies while maintaining a similar parameter count.

B. Cellular Signal Processing

Without loss of generality, for the sake of simplicity in
the explanation, in this work, we will mainly consider signals
whose support is the underlying 2-dimensional cell complex,
which is constructed with nodes, two tuples of nodes called
edges, and three or more tuples of nodes that are connected
with edges called polygons (see Fig. 1). These objects can
be formally described in the framework of abstract cell
complexes, which are general enough to incorporate graphs,
simplicial complexes, and several geometric structures [13].

Definition 1 (Abstract Cell Complex (ACC) [14], [15]). An
abstract cell complex is a tuple C = {S,≺b, dim}, which is
composed of the set S together with a strict partial order
≺b

1 called boundary relation and a non-negative dimension
function dim : S → Z, which is monotone with respect to this
boundary relation and the usual order on Z.

An ACC involves a set S of cells. A k-cell of S, is an
element x ∈ S with dim(x) = k, where 0-cells are termed as
vertices, 1-cells as edges and 2-cells as polygons. The set of all
k-cells is denoted as Ck and the number of k-cells is denoted
by Nk. We call K as the dimension of the cellular complex
C if there exists K = max

σ∈S
dim(σ). Throughout this text, we

assume that K exists and is finite. An example of an ACC
with K = 2 is illustrated in Fig. 1, which could represent for
instance a water distribution network, where the junctions are
0-cells, the pipes connecting them are 1-cells and the closed
surface between nodes are 2-cells.

1Subscript b is placed to distinguish the relation from partial order over the
matrices.

For each Ck, we can associate k-cellular signal fk : Ck → R.
The set of signals over Ck is denoted by Ωk (C) for all k =
0, 1, . . . ,K. One can define a vector fk ∈ RNk , whose entries
are the signal values over Ck, where fk(σ) corresponds to the
value of the signal on σ ∈ Ck. In Fig. 1, the signals xi(σ) are
named with this convention. In a water network for example,
x0(v) can be the pressure at a junction v, x1(e) can be the flow
rate through pipe e and x2(τ) can be total circulating flow on
the surface τ . We also define Ω−1(C) = ΩK+1(C) = {0} for
simplicity and boundary maps Bk : RNk → RNk−1 , satisfying
BkBk+1 = 0. A canonical way that accounts for the topology
is to define boundary maps according to the boundary relation
and the orientation given to the cells [14], [16], where the
entries of boundary maps are typically from the set {−1, 0, 1}.
Fig. 1 shows the established orientations. If the signal is time-
varying, we will denote the signal with matrix notation Fk ∈
RNk×T where T is the total number of time instants and f tk
denotes a k−cellular signal at time instant t.

Let rk = rank (Bk), then each boundary map admits a
Singular Value Decomposition (SVD) Bk = UkΛkV

T
k , where

Uk ∈ RNk−1×rk ,Vk ∈ RNk×rk and Λk ∈ Rrk×rk . We
will denote the set of nonzero singular values of Bk as Bk.
Moreover, upper, lower, and Hodge k−Laplacian [14] are
defined as:

Lk = Lk,l + Lk,u = BT
k Bk +Bk+1B

T
k+1 = YkΦkYk

T , (2)

where Yk ∈ RNk×Nk are the eigenvectors of the Laplacian
matrix and Φk is a diagonal matrix whose elements are coming
from the set Fk =

{
λ2 : λ ∈ {0} ∪ Bk ∪ Bk+1

}
[17]. The

frequency response [13] of fk ∈ Ωk (S) is given by

f̂k = Yk
T fk.

We can associate each element of f̂k with singular values
of Bk, Bk+1 and the value 0, since the eigenvalues of the
k-Laplacian are the squared singular values of Bk, Bk+1 and
value 0. Therefore, for a frequency response f̂k, f̂k

(
λ2

)
means

the frequency response at singular value λ. An input k-cell
signal fk can be filtered with a kernel ĥk : R → R as:

yk = Ykĥk (Φk)Yk
T fk = Hk (Lk) fk

where ĥk (Φk) is a diagonal matrix whose diagonal entries are
the element-wise evaluations of ĥk at Fk. Hk (Lk) is called
as a k-cellular filter which captures the spatial relationships
between k-cell signals.

III. CC-VAR MODEL

In this section, we propose the CC-VAR model, which
combines the VAR model’s ability to learn time-lagged de-
pendencies together with the cellular filter’s ability to capture
spatial dependencies. We first propose the CC-VAR model
which extends the previous models over the simplicial com-
plexes and graphs, [10], [11] model by using cellular filters,
leading to a better alignment with the cell structures found
in most real-world networks. Notably, the previous models,
G-VAR and SC-VAR can be seen as a special case of the CC-
VAR model. Additionally, through a frequency analysis, we
demonstrate that the convolve-transform-convolve approach in
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(a) Ocean Dataset oriented cubical complex (b) Football Dataset oriented
cellular complex
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(c) Signal values at selected edges on Ocean Dataset (wind
gradient) and selected nodes on Football Dataset (player speed)

Fig. 2: Cellular complexes and signal values at selected cells used in experiments

the previous models [11], [18] is substituted by a transform-
convolve approach, allowing us to propose a compact CC-VAR
model, with better generalizability.

In [11], the frequency response of the SC-VAR model is
given in terms of the transformed cell functions. Here, we
show that there is no need to transform the cell functions for
the frequency analysis, instead their frequency characteristics
are transferred through the different dimensional cells of the
complex, which allows simplifying the model expression. This
idea is formalized in Theorem 1.

Theorem 1. Let k ∈ {0, 1, . . . ,K}, Hk (Lk) , Hk+1 (Lk+1)
be cellular filters and fk+1 be a signal on k + 1-dimensional
cells. Then, the signal:

fk,1 = Hk (Lk)Bk+1Hk+1 (Lk+1) fk+1

has frequency response

f̂k,1(λ
2) = ĥk

(
λ2) ĥk+1

(
λ2)λf̂k+1

(
λ2) , if λ ∈ Bk+1

and 0 otherwise.

Proof. See Appendix A.
The result is similar for upward transformation from lower

dimensional cells. Theorem 1 states that the resulting signal is
invariant to the order of the convolution, i.e. the resulting fil-
tering output is consistent whether it is applied directly across
different cells, or applied to a single cell and transformed
across different dimensional cells. In other words, convolve-
transform-convolve operations can be achieved by performing
single convolve-transform or transform-convolve operations.

We present the CC-VAR model based on the transform-and-
then-convolve principle

xt
k =

P∑
p=1

Hp
k,−1 (Lk,u)B

T
k x

t−p
k−1

+Hp
k,1 (Lk,l)Bk+1x

t−p
k+1 +Hp

k (Lk)x
t−p
k +

1

P
ϵtk

(3)

where the time series vector of a k-cell at time t, denoted as
xt
k, is expressed as a filtered versions of P time-lagged values

of the signal defined over the k-cell, k−1-cell, and k+1-cell.
Before applying the convolution filters {Hp

k,−1(Lk,u)}Pp=1

to the signals defined over the k − 1-cell, the signals are
transformed into a k-cell signals using a transformation via
the boundary map BT

k . Similarly, the signal defined over
the k + 1-cell is transformed into a k-cell signal via Bk+1,
before applying the filters {Hp

k,1(Lk,l)}Pp=1. In cases where
the signal has a smooth variation over the structure across

different cells, these transformations are natural, intuitive, and
informative about the signal on the k-cell. For example, in
a water network, transforming a 1-cell signal (flow rate in
pipes) to a 0-cell signal via B1 results in a transformed node
signal that represents the sum of directed flows at a junction.
Similarly, transforming a 0-cell signal (node pressure) to an
edge signal via BT

1 produces an edge signal representing the
potential difference between nodes.

IV. ONLINE LEARNING OF CC-VAR MODELS

In this section, first, we formulate the optimization problem
that can extract the parameters of the CC-VAR model in (3)
online when the filters are parametrized by polynomials. Then,
we will discuss complexity and dynamic regret properties of
the proposed problem.

We assume that the cellular filters admit a polynomial
representation with polynomial orders Lk,1, Lk,−1, Lk for their
respective filters, i.e., cellular filter Hp

k,1 is generated from the
parametric kernel as follows:

ĥp
k,1(λ) =

Lk,1−1∑
l=0

al,p
k,1λ

l (4)

and similarly for the other filters. Let us denote the vector of
all polynomial coefficients over k-dimensional cells by ak. We
consider an online optimization problem of the form for time
instant t:

a∗
k(t) = argmin

ak

1

2
(1− γ)

t∑
t′=P+1

γt−t′∥xt
k − x̃t

k (ak) ∥22

+ γt−t′µk,−1∥Bkx̃
t
k (ak) ∥22 + γt−t′µk,1∥BT

k+1x̃
t
k (ak) ∥22

+ λk∥ak∥22, ∀k ∈ {0, 1, . . . ,K}

(5)

where x̃t
k (ak) denotes the estimate of xt

k using (3) and (4) at
time t with respect to parameter vector ak. In (5), the first term
is the data fitting term where γ ∈ (0, 1) is the forgetting factor.
The second and third terms control the frequency content of
the model over the squared values of Bk and Bk+1, respec-
tively, where µk,−1 and µk,1 are regularization parameters
controlling the smoothness of the estimated signal over dif-
ferent frequencies. The last term represents the regularization
for the parameter vector ak, reducing the effect of random
noise, where λk is the regularization parameter. To solve the
optimization problem (5), we use Stochastic Gradient Descent
(SGD). The transform-and-then-convolve approach reduces
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(a) 1-step ahead prediction of node
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signal (wind speed gradient)
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(e) 6-step ahead prediction of node
signal (temperature)
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Fig. 3: Comparative evaluation of NMSE (a), (e) for temperature; (b), (f) gradient of wind speed, (c), (g) curl of geostrophic
current on Ocean Dataset and (d), (h) player speed on Football Dataset
the complexity of gradient updates based on the polynomial
order. Given that calculating the data fidelity term involves Nk

elements and the regularization terms require N2
k operations

for each polynomial term, the time complexity of the SGD
term is O

(
N2

kL
)
. Since cellular adjacency is expressed using

sparse upper and lower Laplacians (e.g., in water networks),
the time complexity of this algorithm is notably lower than the
squared summation of polynomial orders Lk in the convolve-
transform-convolve approach. Moreover, the transform-and-
convolve principle promotes faster convergence as dynamic
regret is linked to the path length of parameters [19], [20],
which directly relates to the number of parameters. This allows
faster convergence compared to [11].

V. EXPERIMENTS

In this section, we test our algorithm’s estimation and
generalizability capabilities through T -step ahead predictions,
where the algorithms recursively predict T -steps ahead from
their 1-step ahead predictions. We evaluate our algorithm using
two different datasets described below:

a) Ocean Dataset: The Ocean Dataset comprises an
oriented cubical complex sampled from a 20× 20 grid at the
southern tip of Africa (latitudes −15 to −45, longitudes 20
to 53.1), as shown in Fig. 2a. Cellular signals include daily
sea surface temperature over 225 nodes [21], sea surface wind
speed gradient over 498 edges [22], and curl of the geostrophic
current over 274 polygons [23] for 2023. Simplicial complex-
based algorithms only consider node and edge data due to the
absence of triangles. We assess performance for 1- and 6-step
ahead predictions for node, edge, and polygon signals.

b) Football Dataset: The Football Dataset [24] includes
10 nodes (players), 14 edges, and 5 polygons representing

closed loops, where the players’ mean coordinates for the
first minute encode structural information. Speed and distance
between players, and the area of each polygon are used as
node, edge, and polygon signals, respectively. We use 500
data samples collected at 0.05-second intervals within the first
minute for parameter estimation and evaluate performance for
15- and 20-step ahead predictions of node signals.

We compare our online algorithm in (5) with state-of-the-
art models including SC-VAR [11], S-VAR [18], TIRSO [1],
RFNL-TIRSO [25], and TopoLMS [12]. We distinguish be-
tween CC-VAR and C-VAR, where C-VAR uses (3) assuming
Ωk+1(C) = Ωk−1(C) = 0. G-VAR [10] is omitted, as no
online algorithm exists for it; it is essentially C-VAR applied
at the node level. Comparison is based on the NMSE metric
defined for each time instant t over k-dimensional cells as
NMSE = ∥ztk − z̃tk∥

2

2 / ∥z
t
k∥

2

2, where ztk is the ground truth
signal and z̃tk is the predicted signal. The results are shown
in Fig. 3. RFNL-TIRSO is excluded from the Ocean Dataset
due to instability issues.

For the Ocean Dataset, C-VAR (but not S-VAR) shows sim-
ilar performance to SC-VAR and CC-VAR, while TopoLMS
slightly outperforms CC-VAR for 1-step predictions over the
nodes. SC-VAR and S-VAR struggle with edge data due
to the absence of triangles and parameter redundancy from
the convolve-transform-convolve principle. In the Football
Dataset, CC-VAR outperforms all models for large step-ahead
predictions (15-20 steps), reaching an NMSE near 0.1 and
demonstrating faster convergence than SC-VAR, consistent
with our discussion on dynamic regret in Section IV. Further-
more, CC-VAR surpasses C-VAR, highlighting the importance
of utilizing node, edge, and polygon data for modeling. CC-
VAR consistently outperforms TIRSO and TopoLMS for high
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step-size predictions.
To explain the performance difference between TIRSO and

TopoLMS across different step-ahead predictions, we plot
selected edge values for the Ocean Dataset and node values
for the Football Dataset in Fig. 2c. The Football dataset
shows smooth variations, whereas the Ocean Dataset has rapid
changes, making online estimation more challenging. As a
result, we observe higher performance variability for different
time-step predictions. The TIRSO model overfits due to a high
number of parameters, while TopoLMS lacks a forgetting term
γ as in (5) and considers node, edge, and polygon signals
separately. Therefore, CC-VAR excels in adaptability with
fewer parameters, integration of all cellular complex signals,
and the use of a forgetting term.

VI. CONCLUSION

In this work, we introduce cellular complex VAR models
(CC-VAR) to represent time series data defined over higher-
order structures. The CC-VAR model leverages the cellular
structure of real-world networks as an inductive bias, enabling
effective modeling of time series generated by these networks.
This approach proves particularly advantageous in scenarios
with a large number of time series, limited available data, or
when swift updates are required in an online setting with better
adaptability guarantees.

APPENDIX A. PROOF OF THEOREM 1

In this section, we will present a proof to Theorem 1.

Proof to Theorem 1. We prove the statement for fk,1. The
basic idea is to use the fact that BkBk+1 = 0. Considering
the SVD of Bk+1, we can write:

Bk+1Hk+1 (Lk+1) fk+1 =∑
λ∈Bk+1,ϕ∈Fk+1

λuk+1(λ)vk+1(λ)
⊤ul

k+1(ϕ)hk+1(ϕ)f̂k+1(ϕ) (6)

Note that by Proposition 1 in [17], vk+1(λ)
⊤ul

k+1(ϕ) =
1, if ϕ = λ2, vk+1(λ)

⊤ul
k+1(ϕ) = 0 otherwise. Then this

expression becomes

Bk+1Hk+1 (Lk+1) fk+1 =∑
λ∈Bk+1

λuk+1(λ)hk+1(λ
2)f̂k+1(λ

2) (7)

Applying similar arguments yields the desired result:

Hk (Lk)Bk+1Hk+1 (Lk+1) fk+1 =∑
λ∈Bk+1

ul
k+1(λ

2)hk(λ
2)hk+1(λ

2)λf̂k+1(λ
2). (8)
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