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Abstract—In recent years stricter regulation of data privacy
and protection has accelerated research in synthetic ECG time-
series generation. With the increasing prevalence of Atrial Fibril-
lation (AF), its mathematical modelling remains an open research
problem due to its unique and complex interval and morpho-
logical characteristics. The present research work presents an
R-peak to R-peak (RR) interval distribution-aware integrated
Hidden Markov Model-Van der Pol (HMM-VdP) oscillator based
AF electrocardiogram (ECG) generator model. The approach
consists of two parts: A HMM that is trained on RR intervals
obtained from real-world AF ECG signals. The output of the
trained HMM model is utilized to drive a coupled VdP oscillator
model that is modified to generate synthetic ECG time-series
with AF-like morphology. A final post-processing algorithm is
applied on the output of the HMM-VdP oscillator model to get
the synthetic AF time-series. The generated synthetic AF time
series is evaluated comparatively with existing state-of-the-art
dynamic AF models through qualitative (time-series morphology
and Poincaré plot analysis) and quantitative (proposed metric)
measures. The proposed AF model has shown significant im-
provement over the existing dynamic models. The proposed AF
model can be utilized for AF detector evaluation, clinical training
purpose.

Index Terms—Atrial Fibrillation, ECG modelling, ECG syn-
thesis, Hidden Markov Model, Van der Pol oscillator.

I. INTRODUCTION

More than 32% of all global deaths are caused by cardio-
vascular diseases (CVDs) [1]. Physicians and clinicians rely
on Electrocardiogram (ECG) as the primary diagnostic tool
for the prognosis of CVDs and cardiac health monitoring.
Availability of large real-world ECG datasets has ushered in
a disruptive era of AI based solutions for cardiac monitoring
and CVD detection in this current decade [2], [3]. However,
two common limitations of such datasets are – I) skewed
distribution of classes based on prevalence and II) enforcement
of stricter regulations regarding data-privacy and data-sharing
through laws like HIPPA [4] and nFADP [5]. Development
of ECG models for generation of synthetic ECG data can po-
tentially circumvent such limitations. Consequently, enhanced
research efforts towards development of ECG models have
been reported in recent years. [2] provides an expansive review

of the existing sate-of-the-art (SoA) ECG modelling and syn-
thetic ECG generation algorithms. Such modelling approaches
can be broadly categorized under two classes: 1) mathematical
models (MM) [6], [7], and 2) deep generative models [8],
[9]. The MM category can be further sub-categorized into
physiological, dynamic, and morphological models. While the
physiological models aim to capture cardiac conduction at the
cellular level, the morphological models target a single heart
beat [2]. The purview of the present research work is the third
subcategory: the dynamic models. The dynamic models aim
to identify a set of mathematical equations that can mimic
the typical ECG morphology (P, QRS, and T waves). [10]
and [11], [12] are two seminal works in the dynamic ECG
modelling domain. In [10], a dynamic model mimicking the
cardiac conduction system is reported where the pace-makers
are represented by modified Van der Pol-type (VdP) oscillators
connected through time-delay velocity coupling and the heart
muscle depolarization and repolarization processes are repre-
sented by modified FitzHugh–Nagumo model [13], [14]. The
fact that not only normal sinus rhythm, but other pathological
conditions like tachycardia and bradycardia are successfully
modelled using this approach affirms its suitability for such
purposes. Further modification of the model are reported to
extend its capability to mimic pathological conditions like left
and right bundle branch blocks [12].

Atrial fibrillation (AF) is a high-risk, high-prevalence ar-
rhythmia characterized by irregular heart rhythm and rapid
heart-rate [15]. The AF ECG morphology is markedly different
from the quasi-periodic nature of the normal sinus rhythm [16]
and thus its mathematical modelling offers unique research
challenges. Mathematical model of AF can potentially aid in
deeper understanding of the mechanism of AF, generating new
insights [17]. While a few mathematical models of AF have
been reported in recent years [18], [19], reliable mathematical
modelling of AF through VdP-type oscillators remains an open
research problem. The current research work proposes a novel
hidden Markov model driven RR interval distribution-aware
coupled Van der Pol oscillator based AF model.

The key research contributions of the work are as follows:
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• A novel approach of modelling the AF specific RR
intervals through hidden Markov model is proposed.

• A modified coupled Van der Pol type oscillator is pro-
posed that incorporates the characteristic features of AF
like the absence of P-waves and presence of fibrillatory
f-waves.

• A novel HMM driven RR-interval distribution-aware cou-
pled Van der Pol oscillator based AF model is proposed
through integration of the above two approaches.

• The performance validation of the proposed AF model is
done through qualitative and quantitative comparison with
real-world AF data and existing state-of-the-art dynamic
AF models.

The rest of the paper is structured as follows. Section II
presents the details of the proposed AF model development
methodology. Section III presents the validation result and
comparative analysis of the proposed AF model’s perfor-
mance. Section IV prsents the concluding remarks.

II. PROPOSED METHODOLOGY

A. RR and δRR intervals of AF

While the typical RR-interval pattern gives AF its unique
morphological characteristic, features derived from δRR are
reported to be able to distinctively identify AF sequences [20].
This underscores the importance of δRR in characterizing AF
sequences, and makes its consideration imperative for reliable
MM of AF sequences. The statistical modelling approach
of HMM, that develops probabilistic state transition models,
learning from observable and underlying data, makes an ap-
propriate choice for the present use-case of AF RR-interval
modelling. For the training of the HMM, the instantaneous
heart-rates are taken as the observations, and the δRRs are
taken as the hidden states.

B. Hidden Markov Model: brief theoretical background

Hidden Markov model is a statistical tool that has been
widely employed for the modelling of random processes in
diverse fields like speech, bioinformatics, signal processing,
etc [21]. It is based on the basic Markov chain assumption
given in (1)

P (qi = a|q1.....qi−1) = P (qi = a|qi−1) (1)

for a sequence of state variables q1, q2, ....., qi. A typical HMM
model is defined by HMM(Q,A,B,π) where Q and A repre-
sents the set of states and transition probabilities respectively,
B represents the observation likelihood/emission probabilities
that expresses the probability of an observation ot (drawn from
a vocabulary V = v1, v2, · · · , vv) being generated from a state
q1 and π represents the initial probability distribution. The
tutorial by Rabiner [22] provides a detailed description of the
HMM algorithms and applications.

C. Integrated HMM-VdP based AF ECG model

The block diagram of the proposed integrated HMM-VdP
based AF ECG model is shown in Fig. 1. The VdP part of
the proposed integrated model is based on the modification

Fig. 1. Block diagram of the integrated HMM-VdP based AF ECG model

of the VdP model reported in [12] for bundle block disease
modelling. For the model, four oscillators are used to represent
the sino-atrial (SA), atrio-ventricular (AV) nodes, and the right
and the left bundle branches (RB, LB) of the His-Purkinje (HP)
system. Further, the FitzHugo–Nagumo equations are utilized
to model the electrical process in the cardiac muscles. (2) to
(5) represents the dynamics of the natural pacemakers and the
HP fibres, where xi(t) and yi(t) represent the action potential
and the transmenbrane currents of the heart, ai(xi − uik) are
the damping factors, fixi(xi−dij)(xi−eik) are the harmonic
force terms, ai > 0, uij represent the non-linear damping
force parameters, fi are the parameters related to the intrinsic
frequency of the oscillator, the coupling coefficients kSA−AV

and kAV−HP represent the unidirectional coupling between
the pacemakers SA, AV and HP.

Further, the depolarization and the repolarization of the
atrial and ventricular muscles are represented by Fitzhugh-
Nagumo model as given in (6) to (9). Finally the activation
currents Ii that represents the coupling between the SA and
the atrial muscles and between the RB-LB pacemakers and the
ventricular muscles are represented by (10) to (13). The values
of the parameters except f1 are identical to those reported in
[12].

SA =


ẋ1 =y1,

ẏ1 = −a1y1(x1 − u11)(x1 − u12)

− f1x1(x1 + d1)(x1 + e1)

(2)

AV =


ẋ2 = y2,

ẏ2 = −a2y2(x2 − u21)(x2 − u22)− f2x2

(x2 + d2)(x2 + e2) +KSA−AV (x1 − x2)

(3)

RB =


ẋ3RB

= y3RB
,

ẏ3RB
= −a3y3RB

(x3RB
− u31)(x3RB

− u32)− f3x3RB

(x3RB
+ d3)(x3RB

+ e3) +KAV−RB(x2 − x3RB
)

(4)

LB =


ẋ3LB

= y3LB
,

ẏ3LB
= −a3y3LB

(x3LB
− u31)(x3LB

− u32)− f3x3LB

(x3LB
+ d3)(x3LB

+ e3) +KAV−LB(x2 − x3LB
)

(5)
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Pwave =


ż1 = k1(−c1z1(z1 − w11(z1 − w12)− b1v1

− d1v1z1 + IATDe
),

v̇1 = k1h1(z1 − g1v1)
(6)

Tawave =


ż2 = k2(−c2z2(z2 − w21(z2 − w22)− b2v2

− d2v2z2 + IATRe
),

v̇2 = k2h2(z2 − g2v2)
(7)

QRS =


ż3 = k3(−c3z3(z3 − w31(z3 − w32)− b3v3

− d3v3z3 + IV NDe
),

v̇3 = k3h3(z3 − g3v3)

(8)

Twave =


ż4 = k4(−c4z4(z4 − w41(z4 − w42)− b4v4

− d4v4z4 + IV NRe
),

v̇4 = k4h4(z4 − g4v4)
(9)

IATDe
=

{
0, for y1 ≤ 0,

KATDe
y1 for y1 > 0,

(10)

IATRe
=

{
−KATRe

y1, for y1 ≤ 0,

0 for y1 > 0,
(11)

IV NDe
=

{
0, for y3HP

≤ 0,

KV NDe
(ytot3RB

+ ytot3LB
) for y3HP

> 0,
(12)

IV NRe
=

{
−KV NRe

(ytot3RB
+ ytot3LB

), for y3HP
≤ 0,

0 for y3HP
> 0,

(13)

f1 is a key parameter of the VdP system that controls the in-
trinsic oscillation of the AV node. The non-linear relationship
that exists between f1 and the AV oscillation rate is shown
in Fig. 2. Leveraging this relationship, a modification in the
existing VdP model is introduced in the form of an additional
oscillator node with high f1 values scaled by a random
multiplier to model the fibrillatory f-waves. Additionally, the
output of (6) is disconnected from the output to realize the
absence of P-wave. The trained HMM model is integrated
with the modified coupled VdP system through an interface
that maps each element of the synthetic HR vector (generated
by the trained HMM model) to its corresponding f1 value.
The f1 value then controls the VdP system to generate ECG
sequence with target RR-interval.

Fig. 2. Mapping between f1 and ECG heart rate

Fig. 3. Histogram of the states

III. RESULT AND DISCUSSION

A. Training of the proposed AF model

The proposed integrated HMM-VdP oscillator based AF
model is realized in the MATLAB-Simulink computational
environment. A subset of the publicly available PhysioNet
Challenge 2017 [23] training dataset, containing 758 AF anno-
tated ECG recordings, henceforth referred to as PNC17AFDB,
is used for training and validation of the proposed model. For
the purpose, the PNC17AFDB is split into training and testing
subsets in the ratio of 80 : 20. For the training purpose,
the R-peak indices of the PNC17AFDB are extracted using
the modified Pan-Tompkin’s algorithm [24]. Now, the HMM
model is trained with the derived RR and δRR sequences
taken as the emissions and the hidden states respectively.
For this training purpose, the iterative Forward-Backward
algorithm is utilized. The distribution of the hidden states are
shown in Fig. 3. The count of the hidden sates is reduced to 73
through quantization. The state-emission probability matrix as
learnt by the HMM model is plotted in Fig. 4. The probabilities
are plotted in the logarithm scale for prominence. The trained
HMM model is then utilized to generate 200 vectors of HR
sequences, each containing 120 elements. The distribution of

Fig. 4. Plot of emission probabilities
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Fig. 5. Comparison of synthetic and real-world AF heart-rate distribution

(a) PNC17AFDB test subset (b) Proposed HMM-VdP AF model

(c) SoA1 paroxysmal AF model (d) SoA2 Gaussian wave AF model

Fig. 6. Sample plots of real-world AF time-series and synthetic AF time-
series generated by the proposed HMM-VdP AF model and existing SoAs

the generated synthetic HRs and the corresponding distribution
of the PNC17AFDB test subset are plotted in Fig. 5. The
significant overlap between the two distributions validates the
efficacy of the HMM model in capturing the typical AF heart
rate (HR) characteristics.

Finally, the generated HR vectors are utilized to generate
the ECG sequences from the modified VdP oscillator system
as discussed in the preceeding section, through modulation of
the f1 parameter.

B. Performance evaluation of the proposed AF model

The evaluation framework for the performance analysis of
the proposed AF model is designed considering the two clini-
cally relevant characteristic features of AF - irregularly regular
RR intervals and absence of the P waves. Both qualitative
and quantitative assessments are made part of the evaluation
framework. Further, for a comparative evaluation, the real-
world PNC17AFDB as well as state-of-the-art (SoA) dynamic
AF Models are considered. In particular, two recent dynamic
AF models, reported in [18] and [19], henceforth referred to as
SoA1 and SoA2 respectively, are made part of the assessment.
The reported AF model in SoA1 accounts for important AF
characteristics like AF burden, varying P-wave morphology,
rate of f-wave repetition, etc. The SoA2 reports the usage
of a Gaussian wave-based state space to model the temporal
dynamics AF ECG signals.

Visual inspection is the primary form of verification
employed for evaluation of synthetic ECGs [2]. Accord-
ingly, sample time-series plots of real-world AF from the
PNC17AFDB, and synthetic AF sequences generated by the
proposed AF model, SoA1 and SoA2 are shown as Fig. 6(a),
Fig. 6(b), Fig. 6(c) and Fig. 6(d) respectively. Fig. 6(a) is
taken as the real-world reference. Upon visual inspection of

(a) PNC17AFDB test subset (b) Proposed HMM-VdP AF model

(c) SoA1 paroxysmal AF model (d) SoA2 Gaussian wave AF model

Fig. 7. Poincaré plots of real-world AF time-series and synthetic AF time-
series generated by the proposed HMM-VdP AF model and existing SoAs

TABLE I
QUANTITATIVE ASSESSMENT OF THE PROPOSED AF MODEL

Method R-peak count P-wave count Pcount/Rcount

Actual dataset
(PNC17AFDB)

35333 1063 0.03

Proposed AF model 10250 5502 0.54
SoA1 [18] 10000 7630 0.76
SoA2 [19] 13326 16486 0.81

the figures, it can be surmised that among the three synthetic
sequences, the one generated through the proposed method
bears closest resemblance with the reference real-world AF
signal in terms of RR interval irregularity, absence of P-
wave and the presence of the fibrillatory f-waves. It can be
further observed that for the sequence produced by SoA1, the
RR interval variance is not as prominent as in the reference
Fig. 6(a). Further, in case of SoA2 (Fig. 6(d)), the T waves are
missing and the RR interval variation is even more subdued.

The next qualitative evaluation is done in terms of Poincaré
plots. Poincaré plots are widely used for pattern analysis of
random events [25]. In ECG domain, Poincaré plot of (RRi,
RRi+1) pairs have been reported to exhibit distinct patterns
for different pathological conditions, especially for arrhythmic
condition like AF [20]. Accordingly, the poincaré plots of 1000
RR-interval points extracted from each of the PNC17AFDB,
the proposed AF model, SoA1 and SoA2 are shown in
Fig. 7(a), Fig. 7(b), Fig. 7(c) and Fig. 7(d) respectively. Similar
to the case of the time-series plots, upon visual inspection of
the figures, it can be surmised that among the three synthetic
sequences, the Poincaré plot corresponding to the proposed AF
model matches the closest with the reference PNC17AFDB
Poincaré plot in terms of the cluster shape and co-ordinate
location. It can be further observed that for the SoA1 Poincaré
plot, the cluster spread is significantly wider and the location
of the spread does not match with the reference plot either.
For SoA2 Poincaré plot, the shape and spread of the data
points does not match with the reference plot either. Its dense
cluster indicates limited variation in the RR intervals, which
is uncharacteristic of a real-world AF sequence.

The third assessment of the generated AF sequences is done
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in term of a novel quantitative metric, ρR,P . ρP,R is defined as
the ratio between the count of P-waves and R-peaks that are
detected by the Pan-Tomkins algorithm [24] for a given ECG
sequence. By its definition, ρP,R should have a value close
to 1 in case of sinus rhythms and close to 0 in case of AF
sequences. Hence, this metric bears particular significance for
quality assessment of synthetic AF sequences. The count of
R-peaks and P-waves that are detected and the corresponding
values of ρP,R for the PNC17AFDB, the proposed AF model,
SoA1 and SoA2 are reported in Table I. The value of ρP,R is
close the zero for PNC17AFDB, thus corroborating with the
ground-truth. Although, ρP,R for the AF sequences generated
by the proposed method is high (0.54), it is still a significant
improvement over ρP,R values corresponding to SoA1 (0.76)
and SOA2 (0.81) respectively.

Hence, based on the qualitative and quantitative assessment
of the proposed integrated HMM-VdP Oscillator based AF
ECG model and comparative analysis with existing SoAs,
it can be surmised that the proposed model is a significant
improvement over the existing dynamic models for synthetic
AF generation. However there exists a wide scope for im-
provement especially regarding the presence of P-waves.

IV. CONCLUSION

This paper presents a novel integrated hidden Markov
model-Van Der Pol oscillator based AF model that is able
to assimilate the characteristic features of AF and generate
reliable synthetic AF time-series. The generated AF sequences
are validated successfully through qualitative and quantitative
evaluations. Further, the efficacy of the proposed AF model is
substantiated through comparative assessments with existing
state-of-the-art dynamic AF models. AF data generated by
the presented dynamic model can be a valuable resource for
education and characterization of heart diseases. Overall, it can
be concluded that while the proposed model has substantially
reduced the morphological-similarity gap between real-world
and synthetic AF signals, there remains much room for further
improvement through research and innovation.
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J. Oster, and L. Sörnmo, “Electrocardiogram modeling during parox-
ysmal atrial fibrillation: application to the detection of brief episodes,”
Physiol. Meas., vol. 38, no. 11, p. 2058, nov 2017.
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