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Abstract—Data processing systems typically perform inference
on signals using discrete-time stochastic models. This provides
a challenge when the same real-world process is modelled
differently by separate observers, as can be the case in multi-
sensor systems. Stationary ARMA processes are well understood,
with known algorithms for converting them to a particular class
of continuous-time process with identical covariance structure.
These ideas can be extended to provide ARMA models for
integrated processes, as used, for example, in object tracking
applications, and financial modelling. The sequence of successive
predictive distributions of the process is of particular interest in
tracking applications, and we show how to find equivalent state-
space representations for ARMA (discrete-time) and CARMA
(continuous-time) processes by matching these predictive distri-
butions. Generic numerical algorithms for converting between
ARMA and CARMA models are presented, as well as conversion
of the latent process states between these discrete and continuous-
time systems. These are shown to be consistent with the known
algorithms for stationary processes and can also be applied to
non-stationary processes.

Index Terms—stochastic processes, ARMA, CARMA, SDE,
SSM, object tracking, numerical methods

I. INTRODUCTION

Observed data signals vary continuously with time, with
modern data processing systems sampling them at (typically)
regular time intervals to produce discrete-time observation pro-
cesses. The model underlying the observed stochastic process
is then either learned or assumed known a priori when the
process is observed in noise. This raises practical challenges
when the same signal is observed by sensors with different
underlying models, owing, for example, to differing sampling
rates. It is natural to model the underlying continuous-time
processes as stochastic differential equations (SDEs) [1], with
the discrete-time sampled process model acting as a proxy for
the SDE. Fitting SDE parameters from data, in the presence
of noise, is a hard problem with applications in finance,
econometrics, and physical systems [2]–[5]. It may be simpler
to consider the observed process as inherently being a discrete-
time process, for which a common class of models is the
autoregressive moving average (ARMA) process. There is a
vast literature on fitting ARMA parameters, and in particular,
autoregressive (AR) parameters [6], [7].

A natural question arises as to which inferred ARMA
models are exactly equivalent to linear SDEs in some sense.

It has long been known that a class of linear SDEs, appro-
priately known as continuous ARMA (CARMA) models, can
always be sampled to produce ARMA models with identical
temporal covariance structure when they are stationary [8].
These models will be described in Section II. The inverse
problem, i.e. which ARMA models are linear SDEs in the
temporal covariance sense, remained open for decades until an
explicit algorithm for model conversion was found [9]–[11].
Integrated processes have seen applications in finance [12], and
are of particular interest as these provide natural descriptions
for object positions [13], [14], however their non-stationarity
makes them difficult to analyse using the standard tools. These
ideas are briefly discussed in Section III.

ARMA models, and in particular the AR model, have seen
extensive use as a basis for tracking and prediction [15]–
[18], with inference being typically performed by the Kalman
Filter [7]. Switching between different (equivalent) models of
the process also requires converting the inferred state between
the different models. The prior work on finding equivalent
ARMA and CARMA models typically does not discuss the
transformation between equivalent states. Of particular interest
in tracking and decision-making systems is the predictive
performance of the underlying models. This work provides
numerical algorithms for determining models that give nu-
merically identical short-term predictive distributions for the
observed process, as well as the equivalent state distributions
needed to obtain those predictive distributions in Section IV.
Our algorithm is shown to be consistent with that of [9] for
stationary processes, and it can be used to find the parameters
for a ARMA representation of common path models from
object tracking in Section V.

II. STOCHASTIC TIME SERIES MODELS

A signal x : R+ → R is generated by a CARMA(p, q)
process, Xt, if it satisfies the following relation in terms of
the differential operator, D:

ac(D)Xt = bc(D)Wt, (1)

ac(s) ≜ sp −
p−1∑
i=0

ais
i, bc(s) ≜ sq +

q−1∑
i=0

bis
i. (2)
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where Wt is a white-noise process with variance σ2
c . Indeed,

Wt can be a white Lévy process with finite second mo-
ment [19], [20], although the focus here is on Brownian noise.
The process Xt can also be written as the output of a state-
space model (SSM) in terms of a latent p-dimensional vector
process, Zt:

dZt = AcZtdt+ edWt, (3)
Xt = bcZt, (4)

with the system matrices of the form:

Ac =


ap−1 ap−2 · · · a1 a0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 , (5)

bc =
[
bp−1 · · · b0

]
, (6)

e =
[
1 0 · · · 0

]⊤
, (7)

with bp−1, . . . , bq+1 = 0 and bq = 1 by convention. The
roots of ac(·) and bc(·) are the process “poles” and “zeros”
respectively. A commonly used continuous-time process is the
Ornstein-Uhlenbeck (OU) process, which only has a pole at
s = α and no zeros. This is stationary for α < 0, and is known
to be a zero-mean process with weighted-exponential temporal
covariance [1]. This can be used as a model for the acceleration
of a maneuvering object, giving the Singer model [14].

A discrete-time SSM that has exactly the same properties
as a linear SDE can be produced by directly evaluating the
discrete state transition matrix and driving covariance, as
in [1, page 80]. However, this produces system matrices with
complicated structure as each term in the produced matrices
is dependent on all model parameters, which makes model
parameter inference difficult (see, for example, the Singer
model discretisation [14]). Model and process inference
becomes much simpler with discrete-time ARMA models due
to the simple SSM system matrices. This work shows how
these models can be interrelated.

Denote the discrete-time sampling of x(t) by x[k] ≜ x(kTs)
for k ∈ N0, where Ts is the constant sampling period. We say
x is an instance of an ARMA(p, q) process if it satisfies:

ad(L)x[k] = bd(L)ε[k], (8)

where the polynomials ad and bd are in terms of a time-lag
operator, L, and with ε a white noise process with variance
σ2
d. These can also be written as the output of an SSM in

terms of a latent vector process zd [11]:

zd[t+ 1] = Adzd[t] + eε[t], (9)
x[t] = bzd[t], (10)

with state matrices with the same structure as in (3), but with
different coefficients.

III. PROCESS COVARIANCE MATCHING

It has been shown that all stationary CARMA(p, q)
processes can be sampled to produce a valid, stationary
ARMA(p, p − 1) process with the same temporal covari-
ance [8], [20]. The covariance with time-delay h can be found
for both types of processes in terms of their poles and zeros,
but it is complicated for general processes. If one assumes
there are no repeated poles, then the covariances take the form:

γc(h) = σ2
c

p∑
i=1

Kc,i exp(λi|h|), (11)

γd[h] = σ2
d

p∑
i=1

Kd,iλ
|h|+1
i , (12)

where the Kc,i and Kd,i can be determined easily. The
CARMA process can be sampled at intervals of Ts, providing
a discrete covariance function. From this, the power spectral
densities of the sampled processes are both rational functions
and the poles, zeros and variance of one type of model can
be found in terms of another by solving a degree p − 1
polynomial [9].

These methods can be extended to find corresponding
ARMA models for the stationary increments of an integrated
CARMA process [12]. However, the resulting transformation
is complicated for the simplest case of a once-integrated
process. These transformations also do not consider how to
transform the latent state between models. In the following
sections we provide a numerical algorithm for transforming
between two process models by considering the predictive
distributions, rather than the process statistics as a whole.

IV. PREDICTIVE DISTRIBUTION MATCHING

Consider an ARMA process in state-space form as in (5).
Let the distribution of the initial states, zd[0], have mean md

and covariance Pd. The k-step-ahead prediction of the latent
state z and the process x are:

zd[k] = Ak
dzd[0] +

k∑
i=1

Ai−1
d eε[k − i], (13)

x[k] = bdzd[k]. (14)

The moments of the distribution of x[k] can be determined,
with some important terms used in the remaining discussion
written as separate functions:

E
{
x[k]

}
= bdΘd(k)md, (15)

Cov
(
x[k]

)
= bd

(
Θd(k)PdΘd(k)

⊤ +Kd(k)
)
b⊤d , (16)

Θd(k) ≜ Ak
d, (17)

Kd(k) ≜ σ2
d

k∑
i=1

Ai−1
d ee⊤(A⊤

d )
i−1. (18)

The same approach is applied to the CARMA process, using
known formulas for the predictive distributions of a linear SDE
from [1, page 80]. Once again writing some terms separately,
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we get the predictive mean and covariance of a CARMA SSM
as in (3) as:

E
{
x(kTs)

}
= bcΘc(k)mc, (19)

Cov
(
x(kTs)

)
= bc

(
Θc(k)PcΘc(k)

⊤ +Kc(k)
)
b⊤c , (20)

Θc(k) ≜ exp(AcTsk), (21)

Kc(k) ≜ σ2
c

∫ kTs

0

exp(Ac(kTs − τ))e

· e⊤ exp(Ac(kTs − τ))⊤dτ. (22)

The algorithm developed below takes a known model, and
finds parameters for a “conjugate” model consistent for (15)
and (19), as well as (16) and (20), equal for some values of
k. It is not always possible to make them identically equal for
all k, so here the error is minimised over k ∈ {1, 2, . . . , p}.
A. Transforming the model

The predictive statistics of ARMA and CARMA processes
have expressions that take almost identical forms, so the fol-
lowing discussion for switching between ARMA and CARMA
processes applies just as well to the converse. As a result,
the discussion to follow will use un-subscripted symbols to
denote the model for which all the parameters are known, and
a starred subscript will represent the corresponding quantity
in the conjugate model. For example: if the ARMA system
is known, then the conjugate is CARMA, with b ≜ bd and
b∗ ≜ bc.

From (11) and (12), we see that the covariances of two
processes can only be equal for all h if the bases of the powers
of h are equal. A∗ can be found easily by exchanging poles,
λ, through:

λd,i = exp(λc,iTs). (23)

This mapping is not unique, so we use the convention
|Im(λc,i)| < π.

We now find the MA terms of the conjugate model. Con-
sider the case of having no uncertainty around the initial states
for either model: P = 0 = P∗. Equating the covariance
equations, (16) and (20), thus reduces to:

bK(k)b⊤ = b∗K∗(k)b
⊤
∗ (24)

for k ∈ {1, . . . , p}. This can be written as a system of
quadratic vector equations which will be re-used in a following
discussion:

v⊤Miv = ri (25)

for i ∈ {1, . . . , p}. A least-squares solution to this system uses
loss, gradient, and Hessian:

E(v) ≜
p∑

i=1

(v⊤Miv − ri)
2, (26)

G(v) = 4

p∑
i=1

(v⊤Miv − ri)Miv, (27)

H(v) = 4

p∑
i=1

(
(v⊤Miv − ri)Mi + 2Mivv

⊤M⊤
i

)
. (28)

Algorithm 1 Procedure for constructing the moving average
component, b∗, and the driving variance, σ2

∗, of the conjugate
model.
Require: A, b, σ2, Ts

1: Construct A∗ from (5) and (23)
2: Evaluate Mi ≜ K∗(i) for i ∈ {1, . . . , p}
3: Evaluate ri ≜ bM(i)b⊤ for i ∈ {1, . . . , p}
4: Define E(v), G(v), and H(v) as in (26), (27), (28)
5: Initialise v ← v(0)

6: while E(v) > Emin do
7: v ← v −H−1G
8: end while
9: s← FirstNonZero(v)

10: b∗ ← v
s

11: σ2
∗ ← s2σ2

12: return b∗, σ2
∗

The Newton-Raphson [21] algorithm provides iterative esti-
mates of v which may be repeated until the loss is sufficiently
small (here 1× 10−12):

v(i+1) = v(i) −H
(
v(i)

)−1
G(v(i)). (29)

The MA coefficients of the conjugate model are obtained
by setting Mi = K∗(i) and ri = bK(i)b⊤ so the iteration
converges to v = b∗. Importantly, (25) is symmetric up to the
sign of v. We can divide through by the first non-zero term,
and scale the original variance by this leading term squared
to provide the conjugate variance and ensure our b∗ has unit
leading coefficient. The gradient in (27) vanishes at v = 0, so
special care should be taken to initialise the iteration away
from this point. In practice, the Hessian was found to be
non-singular although no theoretical guarantees are available
in this work. The AR and MA parameters, as well as the
variance of the conjugate model can now be determined; this
is summarised in Algorithm 1.

B. Transforming the initial state

The conjugate latent state mean and covariance can be
determined once the conjugate model parameters are known.
In order to find the mean, equate (15) and (19):

bΘ(k)m = b∗Θ∗(k)m∗ (30)

for k ∈ {1, . . . , p}. The latent mean follows as:

m∗ =

b∗Θ∗(1)
...

b∗Θ∗(p)


−1 bΘ(1)m

...
bΘ(p)m

 . (31)

The inverse here always exists as the matrix has rank p when
the polynomials a∗(·) and b∗(·) do not share roots, due to
Hautus’ lemma [22, Theorem 15.9].

The covariance can be determined by equating (16)
and (20). The terms involving K(k) are equal since that is
exactly the condition that b∗ satisfies. We thus get:

b∗Θ(k)∗P∗Θ(k)⊤∗ b
⊤
∗ = bΘ(k)PΘ(k)⊤b⊤. (32)
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Algorithm 2 Procedure for transforming the initial latent state
distribution between known conjugate models.

Require: A, b, σ2, A∗, b∗, σ2
∗, Ts, m, P

1: Evaluate Θ(i) and Θ∗(i) for i ∈ {1, . . . , p}
2: Evaluate m∗ from (31)
3: Evaluate v⊤

i ≜ b∗Θ∗(i) for i ∈ {1, . . . , p}
4: Evaluate ri ≜ bΘ(i)PΘ(i)⊤b⊤ for i ∈ {1, . . . , p}
5: Define E(M), G(M), and H(M) as in (34), (35), (36)
6: Initialise M ← 0
7: while E(M) > Emin do
8: M ←M −H−1G
9: end while

10: P∗ ← 1
2 (M +M⊤)

11: return m∗, P∗

This is solved through another least squared-error estimate of
a system in the form of (25), however with the variable of
interest being a constant M :

v⊤
i Mvi = ri. (33)

Defining the loss similarly to before:

E(M) ≜
p∑

i=1

(v⊤
i Mvi − ri)

2, (34)

G(M) = 2

p∑
i=1

(v⊤
i Mvi − ri)viv

⊤
i , (35)

H(M) = 2

p∑
i=1

(viv
⊤
i )(viv

⊤
i )

⊤. (36)

The Hessian in (36) is a positive semi-definite constant if some
vi ̸= 0, so the inverse always exists. The conjugate covariance
can be found by letting v⊤

i = b∗Θ(k)∗ and taking ri as the
right side of (32). This method does not guarantee that the
solution produced, M , is a valid covariance matrix. It can be
made symmetric by noting that if M is a solution, then so
are both M⊤ and 1

2 (M +M⊤), the latter being symmetric.
The gradient is non-zero for M = 0, so the iteration can
be initialised at this point. This approach is summarised in
Algorithm 2.

The update steps in both algorithms will be O(p4) as
the inverse Hessian is evaluated at p points. This is not
unreasonable, as p is usually not large, and further hardware
parallelisation will produce better performance in practice.
Further study may provide guarantees for number of iterations
to perform, but empirically it was found to be low.

V. EQUIVALENCE EXAMPLES

We demonstrate the algorithms developed here by first
comparing them to the results produced by [9] on strictly
stationary processes, as well as conjugate state predictions
for a stationary process. Thereafter, we show the non-trivial
conjugate model parameters experimentally for some common
classes of non-stationary models.

Fig. 1 Forward-predictions of the distribution for x using both
the original ARMA model with initial latent distribution and
the conjugate CARMA model and its calculated initial latent
distribution..

A. Stationary processes

Consider a stationary CARMA process given by:

ac(s) = s2 + 1.5s+ 0.5, (37)

bc(s) = s+ 0.25, σ2
c = 1. (38)

With Ts = 1 s, our algorithm provides the conjugate model:

ad(z) = z2 − 1.856z + 0.861, (39)

bd(z) = z − 0.975, σ2
d = 0.0884, (40)

which matches that found in [9, Example 3.11]. We also
successfully reconstruct the original CARMA model when
finding the conjugate of the derived model. The state trans-
formation algorithm is demonstrated for an AR process with
the following parameters and latent state distribution:

ad(z) = z2 − 1.899z + 0.960, (41)

bd(z) = z2, σ2
d = 0.5, (42)

m =

[
3
−1

]
, P =

[
2 0.5
0.5 1

]
. (43)

With Ts = 0.5 s, the conjugate system produced is:

ac(s) = s2 + 0.081s+ 0.251, (44)

bc(s) = s+ 4.863, σ2
c = 0.210, (45)

m∗ =

[
1.740
0.276

]
, P∗ =

[
0.378 0.060
0.060 0.052

]
. (46)

Using the initial state as above, the predictive state distribution
can be evaluated. Figure 1 shows that the ARMA and CARMA
predictive distributions are very close for the 25 s shown, so
the conjugate CARMA system is a good approximation.

B. Non-stationary processes

In tracking literature, it is common to integrate the OU
process some number of times to produce maneuvering object
dynamics. These are examples of CAR processes, so they can
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Fig. 2 ARMA zero and variance for a once-integrated OU
process in terms of parameter α with σ2

c = 1 and Ts = 1 s.

Fig. 3 ARMA zeros and variance for the Singer process in
terms of parameter α with σ2

c = 1 and Ts = 1 s.

be approximated by discrete time ARMA processes. It is well-
known that the OU process is equivalent to an AR(1) process;
so a naive approach represents the n-times integrated process
by an AR(1 + n) process with n poles at z = 1. However,
Figures 2 and 3 show that the zeros and variance of an ARMA
representation are dependent on the OU parameter, α, for a
once-integrated, and twice-integrated OU process respectively.

VI. CONCLUSION

This work has shown numerical algorithms for finding
equivalent ARMA and CARMA models and latent state distri-
butions in terms of short-term predictive distributions. These
correspond with existing literature on stationary processes,
and can be extended to non-stationary processes without
further modifications. This can be applied to object tracking
algorithms using sensors with different sampling rates. Future
work will focus on the accuracy of the produced non-stationary
models and provide performance guarantees for the proposed
algorithms. Extensions to non-linear or heavy-tailed systems
can also be studied.

APPENDIX A
CODE REPOSITORY

An implementation of the proposed algorithm, and the
experiments performed here can be found in the following
repository:

github.com/RalphMcDougall/EUSIPCO-2025-CARMA
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