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Abstract—In this paper, we develop an event-triggered remote
state estimator for nonlinear state-space models under network-
induced one-step randomly delayed measurements. Adopting
event-triggering strategies reduces the transmission burden be-
tween the sensor and the estimator while maintaining the
estimation accuracy. The developed method employs a particle
filter to approximate the posterior distribution using particles
and weights. In the non-triggering case, we use the constrained
Bayesian estimation to compute the integrals associated with the
posterior distribution. We evaluate the performance of the pro-
posed algorithm using a simulated aircraft tracking problem. The
results show that the proposed algorithm provides a comparable
estimation accuracy to a particle filter without event triggering.

Index Terms—Cyber-physical systems, remote state estimation,
event triggering, delayed measurement, particle filter.

I. INTRODUCTION

In recent years, event-triggered remote state estimation
strategies have gained significant attention in cyber-physical
systems for their ability to maintain desirable estimation
accuracy despite limited communication resources [1], [2].
The energy constraints of the sensor network and the finite
bandwidth of the communication channel restrict the con-
tinuous transmission of sensor measurements to the remote
estimator. The adoption of an event-triggering mechanism
aims to achieve a desirable compromise between communi-
cation rate and estimation performance. In such a mechanism,
measurement transmission is controlled by an event-triggered
scheduler, which transmits the measurement only when a
certain triggering condition is met.

Various event-triggering approaches in state estimation have
been explored [3]–[7]. In [3], Miskowicz introduced the open-
loop send-on-delta (SOD) method, a simple yet widely adopted
approach. The authors in [4] propose innovation-based trigger-
ing, where the triggering condition relies on the predicted state
estimate from the linear remote estimator. In [6], the authors
proposed an open-loop and a closed-loop stochastic event-
triggering strategy for measurement transmission. For linear
state space models, a variance-based triggering mechanism
is developed in [5], where the authors discuss the switching
Riccati equation for an event-triggered Kalman filter (KF).
In [8], a sum of Gaussians approach to deal with the event-
triggered measurements is proposed.

For nonlinear systems, an event-triggered extended Kalman
filter (EEKF) is proposed in [9]. In [10], an event-triggered
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Fig. 1 Illustration of the concept of the paper, which combines an
event-triggering strategy with randomly delayed measurements in
cyber-physical systems.

condition is realized for a nonlinear system with packet
dropout conditions using an unscented Kalman filter (UKF).
The same approach has been implemented using the cubature
Kalman filter (CKF) in [11], [12]. However, these works are
based on a Gaussian approximation for the estimator.

For highly nonlinear systems, particle filters often provide
better estimation accuracy at the cost of high computational
burden [13], [14]. The event-trigger-based particle filters (EPF)
are explored in [15]–[19]. The EPF with SOD triggering and
innovation-based triggering are proposed in [18] and [19],
respectively. Ruuskanen et al. [20] proposed an enhanced
event-based auxiliary particle filtering approach for resource-
constrained remote state estimation.

Due to the limitation of the communication channel, several
network-induced phenomena may occur, such as random delay
in measurement, packet dropout, and fading measurement,
among others [21], [22]. Early work on filtering with de-
layed measurements can be found in [23], where the KF
was modified to incorporate the delay. The KF is proposed
for randomly sampled and delayed measurements in [24]. In
[25], the CKF for one-step randomly delayed measurement is
formulated, and the work is extended to account for correlated
noise in [26]. A modified PF to deal with one-step randomly
delayed measurements and unknown latency probability has
been developed in [27]. However, there is a lack of event
triggering-based particle filtering methods that account for
random measurement delays. Our aim is to address this gap.

The main contribution of this paper is an event-triggered
PF to handle one-step delayed measurements (EPF-OD). The
method uses a constrained Bayesian estimation approach to
compute the integrals that arise in the event-triggering model.
Additionally, we numerically evaluate the performance of the
proposed methods. The method is illustrated in Fig. 1.
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II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following nonlinear stochastic dynamic system
in the discrete-time domain

xk+1 = fk(xk) + wk, (1a)
zk = hk(xk) + vk, (1b)

where xk ∈ Rn is the system state at time step k, zk ∈ Rnz is
the sensor measurement, and fk : Rn → Rn and hk : Rn →
Rnz are known nonlinear dynamic and measurement functions,
respectively. The process noise wk, and the measurement
noise vk are uncorrelated white noises with probability density
functions (PDFs) pw and pv , respectively.

This paper considers networks with constrained bandwidth,
such as low-bandwidth wireless sensor networks. Thus, to
reduce the communication burden, an event-triggered mech-
anism [28] is introduced, as depicted in Fig. 1. Let γk be the
trigger-decision variable given as

γk =

{
0, zk ∈ Ξk(z̄),

1, otherwise,
(2)

where Ξk(z̄) is the non-trigger set according to the SOD
strategy defined as {zk ∈ Rnz | (zk − z̄)T (zk − z̄) ≤ ξ}
with z̄ being the last transmitted measurement, and ξ ≥ 0 the
fixed predefined threshold. If γk = 1, the sensor sends the
measurement zk to the remote estimator which we denote as
ȳk = zk; otherwise, no measurement is transmitted. In the
non-trigger case, we assume that the remote estimator knows
that the measurement zk lies in the set Ξk(z̄). Therefore, the
measurement likelihood at the remote estimator, p(ȳk | xk),
in the non-triggering case can be expressed as [20]

p(ȳk | xk) ∝
∫

U(zk ∈ Ξk(z̄))p(zk | xk)dzk,

∝
∫
zk∈Ξk(z̄)

p(zk | xk)dzk,
(3)

where U(zk ∈ Ξk(z̄)) is the uniform distribution of zk over
the non trigger set Ξk(z̄).

As shown in Fig. 1, the sensor measurement zk is transmit-
ted to the remote estimator through an unreliable communi-
cation channel, which may introduce a one-step delay in the
measurement [27]. To model the delay in the measurement,
we introduce a Bernoulli random variable λk ∈ {0, 1} with
parameter α, which consequently has the following properties:
p{λk = 1} = E{λk} = α and p{λk = 0} = 1 − E{λk} =
1 − α. We write the measurement model Eq. (1b) using the
variable (λk) to account for one step delay measurement, as
follows [27]:

yk = (1− λk)zk + λkzk−1. (4)

The value of the trigger variable (γk) is assumed to be known
to the remote estimator [4], [28]. Using Eq. (2) and (4), we can
reformulate the measurement model at the remote estimator as
follows:

ȳk =

{
(1− λk)zk + λkzk−1, γk = 1,

{zk ∈ Ξk(z̄)}, γk = 0.
(5)

This paper aims to develop an event-trigger-based re-
mote state estimation algorithm for nonlinear stochastic
systems with one-step delayed measurement. Let ȳ1:k =
{{ȳ1, γ1}, {ȳ2, γ2}, . . . , {ȳk, γk}} represent the information
set available to the remote estimator. We aim to compute the
approximate posterior distribution of the state p(xk | ȳ1:k)
using particle filtering.

III. EVENT-TRIGGERED PARTICLE FILTER WITH ONE STEP
DELAYED MEASUREMENT

In this section, we formulate the EPF-OD based on the
particle filter approximation. In particle filtering, the posterior
distribution of state p(xk | ȳ1:k) is approximated using the
sequential importance resampling (SIR) method, which relies
on the generated particles and their corresponding weights,
{x(i)

k , w
(i)
k }Mi=1 [15]–[17], as follows:

p(xk | ȳ1:k) ≈ p̂(xk | ȳ1:k) =
1

M

M∑
i=1

δ(xk − x
(i)
k ), (6)

where M is the number of particles and δ(·) is the Dirac delta
function. However, due to the event triggering mechanism, the
measurements zk are not available to the remote estimator at
all time instants k. Thus, approximating p(xk | ȳ1:k) requires
analyzing two cases: when a measurement is transmitted, γk =
1, and when no measurement is transmitted, γk = 0.

A. Non-triggering case (γk = 0)

When the measurement is not transmitted, the information
set available at the remote estimator is ȳ1:k, where ȳk =
{zk ∈ Ξk(z̄)}. Consequently, the posterior PDF is given by
the Bayes’ rule

p(xk | ȳ1:k) ∝
∫
Ξk(z̄)

p(zk | xk)dzk p(xk | ȳ1:k−1), (7)

where p(xk | ȳ1:k−1) is the prior PDF obtained from the
prediction step

p(xk | ȳ1:k−1) =

∫
p(xk | xk−1)p(xk−1 | ȳ1:k−1) dxk−1,

(8)

with p(xk−1 | ȳ1:k−1) being the posterior PDF at k−1. In PF,
p(xk−1 | ȳ1:k−1) is approximated using particles, such that

p(xk−1 | ȳ1:k−1) ≈
1

M

M∑
i=1

δ(xk−1 − x
(i)
k−1), (9)

where x
(i)
k−1 is the (resampled) i-th particle at time step k−1.

Let us assume that the particles {x(i)
k }Mi=1 are generated

by using the dynamic model p(xk | x(i)
k−1) as the importance

distribution. Hence, we can generate samples from the distri-
bution via

x
(i)
k = f(x

(i)
k−1) + w

(i)
k , ∀i = 1, 2, . . . ,M, (10)
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where the noise w
(i)
k is sampled from pw(·). The PF-

approximated posterior distribution becomes

p̂(xk | ȳ1:k) =
M∑
i=1

ω̃
(i)
k δ(xk − x

(i)
k ), (11)

where ω̃
(i)
k is the weight corresponding to i-th particle, given

by

ω̃
(i)
k ∝

∫
zk∈Ξk(z̄)

p(zk | x(i)
k )dzk. (12)

Please note that computing the weights requires solving the
integral Eq. (12). Obtaining a solution for the integral is a
challenging task in real time. To overcome this problem, we
use constrained Bayesian state estimation [28], [29]. We define
a constraint set Ωk as the non trigger set, Ξk(z̄), and the
constraint function, ϕk(xk) as the measurement zk. So, the
particle constraint function ϕ

(i,j)
k (xk) is defined as the particle

measurement z(i,j)k for each particle x
(i)
k , given by

ϕ
(i,j)
k (xk) = hk(x

(i)
k ) + v

(i,j)
k = z

(i,j)
k . (13)

If all the particle measurements {z(i)k }Mi=1 are generated ac-
cording to Eq. (13), the PDF p(zk | x(i)

k ) in Eq. (12) can be
approximated as

p(zk | x(i)
k ) ≈ p̂(zk | x(i)

k ) =
1

M̃

M̃∑
j=1

δ(zk − z
(i,j)
k ). (14)

Let L(i,j)
Ξk(z̄)

(x
(i,j)
k , v

(i,j)
k ) be the corresponding judgment vari-

able that takes 1 if the particle measurement z
(i,j)
k from of

the set {z(i,j)k }M̃j=1 satisfies z
(i,j)
k ∈ Ξk(z̄). Then the particle

weights in Eq. (12) can be approximated as

ω̃
(i)
k ∝ 1

M̃

M̃∑
j=1

L
(i,j)
Ξk(z̄)

(x
(i,j)
k , v

(i,j)
k ). (15)

B. Triggering case (γk = 1)

When the sensor measurement zk is transmitted to the
remote estimator, a delay may occur. To model that, using Eq.
(5), the likelihood function p(ȳk | xk, xk−1), which depends
on both xk and xk−1, can be expressed as

p(ȳk | xk, xk−1) =
∑
λk

p(ȳk | λk, xk, xk−1)p(λk)

= αp(ȳk | xk, xk−1, λk = 1) + (1− α)

× p(ȳk | xk, xk−1, λk = 0),

(16)

where λk is assumed to be independent of the state and event-
triggered variable. The likelihood function can be written as

p(ȳk | xk, xk−1) = αp(zk | xk−1) + (1− α)p(zk | xk). (17)

If particles x
(i)
k are sampled from the importance distribution

p(xk | x(i)
k−1), as in Eq. (10), the importance weights can be

evaluated as

ω̃
(i)
k ∝ αp(ȳk | x(i)

k−1) + (1− α)p(ȳk | x(i)
k ). (18)

Therefore, using Eq. (15) and Eq. (18), the corresponding
importance weights for trigger and non-trigger cases can be
computed as

ω̃
(i)
k ∝

{
αp(ȳk | x(i)

k−1) + (1− α)p(ȳk | x(i)
k ), γk = 1,

1
M̃

∑M̃
j=1 L

(i,j)
Ξk(z̄)

(x
(i,j)
k , v

(i,j)
k ), γk = 0.

(19)

The pseudo-code for the proposed EPF-OD is provided in
Algorithm 1.

Algorithm 1: Event trigger particle filter with one step
delayed measurement (EPF-OD)

Initialization: for i = 1, . . . ,M , draw x
(i)
0 ∼ p(x0).

For time k = 1, 2, . . . , N
1) Importance sampling: for i = 1, . . . ,M , sample particles

x
(i)
k ∼ p(xk | x(i)

k−1).
2) Weight update: for i = 1, . . . ,M , calculate the weight ω̃(i)

k
in Eq. (19).

3) Weight normalization: for i = 1, . . . ,M , normalize the
weight ω(i)

k = ω̃
(i)
k /

∑M
i=1 ω̃

(i)
k .

4) State estimate: Compute the posterior state estimate and
error covariance

• x̂k|k ≈
∑M

i=1 ω
(i)
k x

(i)
k

• Pk|k ≈
∑M

i=1 ω
(i)
k (x

(i)
k − x̂k|k)(x

(i)
k − x̂k|k)

T .

5) Resampling Step: Generate M new samples x
(j)
k from

particles x
(i)
k according to the weights ω

(i)
k .

Return results as x̂k|k, P̂k|k, {x(i)
k }Mi=1 for k = 1, . . . , N .

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
EPF-OD on a simulated aircraft tracking problem [30], where
an aircraft maneuvers in a horizontal plane, with an unknown
turn rate. The target dynamics model in discrete-time domain
is given by:

xk+1 =


1 sin(ΩkTin)

Ωk
0 1−cos(ΩkTin)

Ωk
0

0 cos(ΩkTin) 0 − sin(ΩkTin) 0

0 1−cos(ΩkTin)
Ωk

1 sin(wkTin)
Ωk

0

0 sin(ΩkTin) 0 cos(ΩkTin) 0
0 0 0 0 1

xk + wk,

where xk = [x1,k, x2,k, x3,k, x4,k,Ωk] is the target state, x1,k

and x3,k are the position, x2,k and x4,k are the velocity,
in x and y directions, respectively; Ωk is the turn rate; the
parameter Tin is the time-interval between two consecutive
measurements; the process noise wk ∼ N (0, Q).

The sensor measures range and bearing, and is equipped
with an event-triggering scheduler. The measurement model
can be expressed as

zk =

(√
x2
1,k + x2

3,k

tan−1 x3,k

x1,k

)
+ vk,

where the measurement noise vk ∼ N (0, R). The associated
parameters x0, x̂0|0, P0|0, Tin, Q, and R are consistent with
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those detailed in [30]. The target trajectory is simulated for
100 time steps.

In this problem, we implement the PF-OD [27] and the
proposed EPF-OD. The number of particles used in both PF-
OD and EPF-OD is M = 10000. We set the threshold value ξ
to 8×104 and the latency probability for the one-step delayed
measurement to α = 0.20. Fig. 2a shows that both PF-OD
and the proposed EPF-OD successfully track the true target
trajectory. We compare the performance of the estimators in
terms of position root mean square error (RMSE), evaluated
over 100 Monte Carlo (MC) runs, plotted in Fig. 2b. The figure
indicates that the proposed EPF-OD achieves a similar RMSE
as PF-OD even with 68% of the communication rate.

Furthermore, we assess the performance of the estimators
with varying α and ξ values in terms of position RMSE, as
illustrated in Fig. 3 and Table I. Fig. 3a demonstrates that the
position RMSE of EPF-OD increases slightly as α values rise.
A similar trend is observed for the proposed EPF-OD across
different ξ values in Fig. 3b. In Table I, we present the average
position RMSE results for different values of ξ and α. From
the table, we observe that the average RMSE of the proposed
EPF-OD increases as α and ξ values increase.

Figure 4 presents the plot of the average communication
rate Γ versus ξ, showing that Γ decreases as ξ increases. We
plot the average RMSE of the proposed EPF-OD versus ξ
with different α values in Fig. 5. The figure indicates that the
higher α and ξ values lead to an increase in average RMSE.
Table II presents the relative computational time of EPF-OD
with respect to PF-OD, with fixed α = 0.5 and varying ξ
values. The results indicate that EPF-OD attains a slightly
higher computation cost than PF-OD.

TABLE I Average position RMSE of PF-OD and EPF-OD for
different ξ and α.

Communication rate Γ (in %)

α Filter 90% 68% 48%
(ξ = 5e4) (ξ = 8e4) (ξ = 15e4)

0.1 PF-OD 22.19 22.19 22.19
EPF-OD 22.97 26.71 41.7

0.3 PF-OD 24.4 24.4 24.4
EPF-OD 26.5 28.3 42.7

0.5 PF-OD 26.4 26.4 26.4
EPF-OD 28.6 39.7 49.8

TABLE II Relative computation time of PF-OD and EPF-OD

Communication rate Γ (in %)

α Filter 90% 68% 48%
(ξ = 5e4) (ξ = 8e4) (ξ = 15e4)

0.5 PF-OD 1 1 1
EPF-OD 1.07 1.08 1.44

V. CONCLUSIONS
In this paper, we solve the event-triggered one-step delay

estimation problem by employing a particle filter to approx-
imate the filtering posterior distribution using particles and

(a)

(b)

Fig. 2 (a) The true and estimated target trajectories and (b) RMSE
in position for different estimators.

(a)

(b)

Fig. 3 The position RMSE for different (a) α values and (b) ξ values.

2535



Fig. 4 Sensor communication rate Γ as function of ξ.

Fig. 5 Average position RMSE as function of ξ for different α values.

weights. The integrals arising in the non-triggered case are
computed using constrained Bayesian estimation. Simulations
are conducted on an aircraft tracking problem with varying
latency probabilities and triggering thresholds. The results
demonstrate the effectiveness of the proposed EPF-OD method
under communication constraints.
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