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Abstract—This paper deals with the problem of subspace
detection in structured interference plus non-Gaussian sea clutter.
The non-Gaussian sea clutter is modelled as the inverse Gaussian
texture compound Gaussian (IG-CG) distribution. We project the
detection problem onto the interference-orthogonal subspace by
exploiting the interference cancellation before detection (ICBD)
method. We design three novel detectors based on the two-step
generalized likelihood ratio test (GLRT), Rao, and Wald tests.
The Monte Carlo experiments demonstrate the novel subspace
detectors achieve higher performance gain than the comparison
detectors. The Numerical examples show that the proposed
detector has good anti-interference performance and can operate
in scenarios with insufficient training data.

Index Terms—Subspace detection, Non-Gaussian clutter, Sub-
space interference, Limited training data

I. INTRODUCTION

Target detection in non-homogenous sea clutter with un-
known clutter covariance matrix (CM) has been widely studied
in the fields of radar, sonar, and remote sensing [1], [2]. Based
on the two-step generalized likelihood ratio test (GLRT), the
adaptive matched filter (AMF) detector is proposed in the
Gaussian environment [3]. As the rank-1 signal cannot accu-
rately describe the characteristics of the target, the detector for
the Multirank signal is considered in [4], which is the matched
subspace detector (MSD).

With the increase of radar resolution and the decrease of
radar electromagnetic wave grazing angle, the sea clutter may
exhibit heavy-tailed non-Gaussian distribution. The subspace
detection problem in K distribution sea clutter has been studied
in [5]. The detectors for polarimetric radar, which are constant
false alarm rate (CFAR) tests with respect to (w.r.t) the speckle
covariance matrix, are derived based on the two-step maximum
a posteriori (MAP) GLRT, Rao, and Wald tests [6]. The
adaptive detection problem in compound Gaussian distribution
with lognormal texture is considered in [7] for coherent high-
resolution radar. As the inverse Gaussian texture compound
Gaussian (IG-CG) sea clutter may fit the measured sea clutter
well [8], the subspace detection of distributed targets in the
inverse Gaussian sea clutter is investigated in [9].

However, the interference, which may seriously affect the
detection performance of the detectors, may occur in real
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applications. A unifying framework for radar detection in
structured interference is proposed in [10]. The subspace
detection of the subspace signal embedded in structured inter-
ference plus Gaussian interference, which can be solved by the
principle of invariance, is investigated in [11]. The subspace
detectors for targets in IG-CG clutter with interference are
proposed in [12].

Most of the detectors mentioned above do not consider
the situation of limited training data, which may lead to
inaccurate or even singular covariance matrix estimation. The
authors in [13] consider the radar systems using a symmetric
interval linear array with constant pulse repetition interval
to improve the detection performance. In [14], the detection
problem in the compound Gaussian sea clutter is studied with
persymmetric speckle covariance matrix. Moreover, the prior
information of the speckle covariance matrix can be exploited
to improve the detection performance for radar targets [15].

The detectors above either only focus on the interference
that only occurs in the cell under test (CUT) or insufficient
training data, as the subspace interference may exist in training
data units [16], especially in the situation of limited training
data [17]. In [17], the authors consider the problem of target
detection in structured interference in Gaussian environment
with limited training data.

In this paper, we consider the detection problem of subspace
detection in structured interference plus IG-CG sea clutter.
Besides, we design three novel subspace detectors, which can
operate in the limited training data situation. We verify the
detection performance of the proposed detectors outperforms
the competitors in the simulated and measured sea clutter data.

Notations: We use the light face b, lower case bold face
b, and upper case bold face B to denote scalar, vector, and
matrix, respectively. (-)f is the conjugate transpose operator.
E(-) and det(-) are the operations of expectation and deter-
minant. The inverse of B is given by B~!. C is the set of
complex numbers. Tr(-) is the trace of the matrix.

II. PROBLEM FORMULATION AND MODEL

Assume that the radar system receives signals from N an-
tenna senses. The N-dimensional vector zg € CV*! denotes
the primary data, which is called cell under test (CUT). The
secondary data (i.e. training data) z; € Chx1 represent the
k-th range cell adjacent to the CUT. Therefore, the binary
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hypothesis test of the target detection in subspace interference
and non-Gaussian sea clutter is given by:
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where where the hypothesis H( denotes the absence of the
target, and the hypothesis H; represents the presence of the
target. H@ and J¢ denote the signal and the interference,
respectively. The columns of the subspace signal matrix H €
CN** span the signal subspace (H), and the columns of the
interference signal matrix J € CN*P span the interference
subspace (J). We hold B = bB’ and @ = a@’, where the
unknown N-dimensional vectors B’ and ¢’ stand for the
normalized coordinate of the signal and interference in (H)
and (J), respectively. b and a denote the amplitude of the
target signal and the interference. The full-column-rank matrix
H and J are known in advance, t 4+ p < K. cg and ¢ denote
the sea clutter in the CUT and the k-th range cell adjacent to
the CUT.

We set cg = 7,/80 and ¢, = T,/8k, Where go and gy
represent the speckle component. gy and gy, are the zero-mean
complex Gaussian vector with the unknown covariance matrix
R, . The probability density function (PDF) of the texture
component 7 in the compound Gaussian sea clutter can be
modelled by the inverse Gaussian distribution as follows:

A s A
f(r)= \/;72 exp { 527 (T u)ﬂ )

where A and p denote the shape parameter and the scale
parameter of the inverse Gaussian distribution. Thus, the
clutter covariance matrix can be expressed as My = T7Ry.

When the interference occupies several range cells with
slowly varying [17], the interference both exists in CUT and
training data in the problem (1). However, the interference in
the training data only exists in a few range cells close to the
CUT, which indicates the training data is limited (i.e. K < N).
Therefore, the conventional detectors in [3], [4], [7], [9], [12]
may lose effectiveness in compound Gaussian sea clutter.

We exploit the interference cancellation before detection
(ICBD) method in compound Gaussian sea clutter. We define
J = U, Jy, where U; = J(JHJ)~V/2 J; = (JHI)V/2. And
U, share the same range space with J. We further define the
unitary matrix U = [Uy, Uy], where Uy is a N x (N — p)-
dimensional column unitary matrix. And we note that Uy lies
in the null space of the interference matrix J. Thus, we exploit
U multiplied (1) from the left, we obtain
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Hy X0 0
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where xg = Ug"zo,x;€ = ngk,no = Ufco,nk =
Ulfcy, S = ULH. The covariance matrix of ng and ny, are
M = 7R, where the novel speckle covariance matrix (CM) is
R = UJRyU,.

Therefore, the conditional PDF of x( under hypothesis H;
is given by:

exp [~L(xo — SB) "R (x0 — SB)|

R) =
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The conditional PDF of x; under hypothesis Hy can be
expressed as follows:

1 _
fo(xo|m,R) = NN R| exp [Txé{R IXO} &)

III. DESIGN OF PROPOSED SUBSPACE DETECTORS
In this section, we derive three subspace detectors based on
two-step GLRT, the Rao and Wald tests.
A. ICBD-GLRT subspace detector

In the first step, we assume that the speckle CM R is known,
and the GLRT criterion for (3) is given by:

mBaX f0+°° fl (XO |Ba T)f(T)dT H,

43 (6)
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where ¢ denotes the detection thresholds. Then, we calculate
the maximum likelihood (ML) estimate of 3 as follows:

B =(SHR!S) ISR 'k, (7

According to (7) and the m-order modified Bessel function of
the second kind, the numerator and denominator of (6) under
H, hypothesis is given by:

- e
/0 fq(XO “33 T)f(T)dT = (MW)N+1/2 |R|
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where Ty = %}/P{%o, %o = R7'/?x0,8 = R7Y/28,Pg =
g(gHg)flgH,Pé‘ = Iy — Pg, Ty = x{'%y. And m-order
modified Bessel function of the second kind is given by:

1/z\m [T x2
Km(z):i(i) /0 =M+ oy (tu)dt 9)

In the second step, we estimate the speckle CM R by
exploiting the fixed point (FP) covariance estimator as [18]:

®)

K
R+ _ N XpXp

FP — =1 (10)
k=1 xH {RI(:‘;)] Xk
where o is the iterations. And we set the identity matrix as the
initial estimation.
Substituting (8) and (10) into (6), we obtain the ICBD-based
subspace detector by exploiting GLRT in compound Gaussian
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sea clutter with inverse Gaussian texture (ICBD-GLRT-1G) as
follows:

N 1
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B. ICBD-RAO subspace detector
In the Rao and Wald tests, we set 0 = [07,07]7 ¢

Ct+Dx1 and we define 0, = § and O, = 7. The Rao test
for the problem in (3) of the complex value is given by:

oln f1 (xol0)|"
090,

81I1f1 (XO |9)
0o
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(12)
where ( denotes the detection threshold for the Rao test. éo
denotes the ML estimate of © under H hypothesis. I (0) is the
Fisher information matrix (FIM), with the blocks of Ig_ o, (),
Io, 0.(0). Io,,0,(0), and Ip, 6,(6)
After some algebra, we yield

0=8,
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We obtain the middle term of the Rao test in (12) by utilizing
the matrix inversion lemma as follows:

()], , s as

The target is absent (i.e. B = 0;x1) under hypothesis Hj, the
ML estimate of the relative parameter 0, is 0, = Oyx.

In the second step, we obtain the MAP estimate of the
texture component 7 as follows:

7o = argmax fo (xo|7) f (7) =

2 (16)
57 [—(QN +3)+ \/(2N +3)%+ %(A +2Ty)

Inserting (13), (14), (15),and the estimated speckle (16) into
(12), the ICBD-based subspace detector by exploiting the Rao
test in compound Gaussian sea clutter with inverse Gaussian
texture (ICBD-RAO-IG) is given by:

INZE P 5% ,
_ = ¢ a7
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C. ICBD-WALD subspace detector

The Wald test of the complex value for the ICBD-based
problem in (3) with known texture component and the speckle
matrix is given by:

~H 1A -1 H,
8,1 [171(81)] 0,127
' 6,0, H

0

(18)

where v denotes the detection threshold. él and énl are the
ML estimates of © and 0, under hypothesis H;, respectively.

We take the derivative of the logarithm of (4), by setting the
result equal to 0, and we yield the ML estimate of 3 in (7).
Besides, we notice that the middle term is the inverse form of
(15) as follows:

(e, .} =tsmmes

Then, in the second step, we obtain the MAP estimate of the
texture component 7 under hypothesis H; as follows:

(19)

71 = argmax fi (xo|7) f (1) =

2 (20)
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Substituting (7), (19), and the estimated 7; and Rpp into the
test statistic of the Wald test in (18), after some algebra,
we yield the ICBD-based subspace detector by exploiting
the Wald test in compound Gaussian sea clutter with inverse
Gaussian texture (ICBD-WALD-IG) as:

~H ~ ~
2Xx4 PgXo i Ig v @D
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IV. PERFORMANCE ASSESSMENT

In this section, we exploit the measured sea clutter data to
exhibit the detection performance of the three subspace detec-
tors. And we set 100/ Py, standard Monte Carlo experiments
to obtain the detection threshold, where P, is the probability
of false alarm. The probability of detection (i.e.F;) is obtained
by 10/ Py, experiments.

We define the signal-to-clutter ratio (SCR) as SCR (dB) =
10log,[Tr(B¥H”HB)/(Np)]. The interference-to-clutter
ratio (ICR) as ICR (dB) = 10log,[Tr(@Z I J@)/(Npu)].

Weset N =12, K =10,r = 2,p =6, 0 = 4, ICR = 20dB,
and we generate the coordinate B’ and ¢’ randomly.

Besides, we select the ICBD-GLRT-PHE, ICBD-RAO-HE,
and ICBD-WALD-HE in [17] as the comparison detectors.
Moreover, we set the ICBD-GLRT-IG, ICBD-RAO-IG, and
ICBD-WALD-IG with known R, which can not be obtained
in the real situation, as benchmark.

A. Simulated Data

Fig. 1 shows the detection performance of the proposed
detectors. Fig. 1(a) and Fig. 1(b) show the P; versus SCR of
the detectors. We can see that the proposed detectors achieve a
gain of more than 3dB than the competitors in P; = 0.9 in the
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Fig. 1. Detection performance of the detectors in simulated sea clutter data. (a) P4 versus SCR in limited training data (K = 10). (b) Py versus SCR in
sufficient training data (K = 24). (c) ROC curves in SCR= —2dB. (d) Py versus ICR in SCR= —2dB.

limited training data (K = 10) in Fig. 1(a). We set K = 24
in Fig. 1(b). We can observe that the detection performance
of the novel detectors, which outperform the competitors, is
close to the theoretical curves as the training data improves.
In Fig. 1(c), we plot the ROC curves of the detectors. Fig.
1(c) shows the proposed detectors achieve higher P; in a
large range of Py,. Fig. 1(d) is the P; versus ICR curves
of the newly detectors, which demonstrates the P; remains
unchanged as the ICR changes.

B. Real Sea Clutter Data

We select the IPIX radar file 86 [19] as the real sea
clutter to verify the detection performance of the detectors.
And we choose the 16-th range bin with HH polarization
as the CUT. In the real sea clutter data, we define the
signal-to-clutter ratio (SCR) as SCR (dB) = 10log,(07 /02),
where the o? and o2 represent the power of target and
clutter, respectively. The interference-to-clutter ratio (ICR) as
ICR (dB) = 10log,o(0?/02), where the o2 represents the
power of the interference.

In Fig. 2(a), we can see that the real sea clutter of high
resolution radar is time varying. Fig. 2(b) is fitting result of

the sea clutter and the estimated CG-IG distribution with p =
1.983 and A = 11.4656. In Fig. 2(c), we set K = 10. It is
observed that the novel detectors superior to the conventional
detectors. Fig. 2(d) depicts the ROC curves of the detectors in
SCR=10dB, and we find the proposed detectors achieve better
detection performance than the competitors.

V. CONCLUSION

In conclusion, the target detection problem in IG-CG sea
clutter with structured interference has been considered. We
first exploit the ICBD-based method to transform the subspace
detection problem. Then, we design three novel subspace
detectors based on the two-step GLRT, Rao, and Wald tests.
The experiment results demonstrate the proposed detectors
outperform the conventional detectors.
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