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Abstract—This paper studies the adaptive detection of range-
spread targets in a Gaussian environment, assuming a Kronecker-
product structure for the disturbance covariance matrix. Invok-
ing the principle of invariance, we identify a transformation
group that significantly reduces the dimensionality of nuisance
parameters, ensuring the constant false alarm rate (CFAR)
property for all invariant statistics. A maximal invariant (MI) is
derived, providing the foundation for new CFAR detectors that
are invariant tests functionally depending on the MI. At the stage
of detector design, two adaptive detectors are devised: the former
employs the two-step strategy and incorporates the Kronecker
maximum likelihood estimate based on secondary data, while the
latter is the one-step generalized likelihood ratio test realized via
an alternating-optimization algorithm. Both are invariant tests,
and thus their CFAR properties with respect to the Kronecker
covariance matrix are naturally guaranteed. Numerical results
demonstrate the superior detection performance and robust
CFAR behavior of both the detectors compared to conventional
methods designed for the unstructured case.

Index Terms—Adaptive detection, Kronecker structure, invari-
ant theory, CFAR.

I. INTRODUCTION

Reliable adaptive detection of radar targets generally de-
mands accurate estimation of disturbance covariance matrices
[1]–[3]. However, in practical scenarios, the available training
data are often limited, leading to performance degradation of
conventional detectors designed under the assumption of a
completely unknown covariance matrix [4]. Indeed, depend-
ing on operating scenarios and radar system characteristics,
specific structures on the disturbance covariance matrix may
be identified. Incorporating such prior knowledge into detec-
tor design has emerged as an effective strategy to enhance
estimation efficiency and detection capability [5].
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The Kronecker-product structure has recently gained pop-
ularity in multidimensional signal processing, owing to its
extensive application in areas such as space-time adaptive
processing for classic side-looking array geometry [6], [7],
polarimetric array radar [8], [9], and multiple-input-multiple-
output radar [10]. Estimators that effectively exploit this
structure can reduce the amount of training data required to
achieve satisfactory inference accuracy. However, the constant
false alarm rate (CFAR) property of plug-in detectors, which
incorporate these structured estimators directly into conven-
tional architectures, still requires further verification and is not
always guaranteed particularly when regularization techniques
are employed (e.g., [8]).

Invariant detection theory [11], [12] provides a principled
framework for designing CFAR detectors. Specifically, enforc-
ing invariance under a suitably identified group of transfor-
mations can reduce the number of nuisance parameters with-
out compromising essential information for target detection
task. Once the interplay between invariance and CFARity is
well-established, invariant tests often automatically guarantee
the CFAR property. Existing studies have explored related
frameworks for unstructured covariance [1], [13], [14], per-
symmetric [15], [16], and block-diagonal structures [12], [17],
[18], but invariant detection under the Kronecker covariance
structure has not yet been explored in the open literature.

Motivated by the above reason, this paper conducts an
invariance analysis for range-spread target detection under
Gaussian disturbance with a Kronecker-structured covariance
matrix. We derive a maximal invariant (MI) and an induced
MI, and show that any invariant test ensures the CFAR prop-
erty. Furthermore, two invariant detectors are derived whose
CFAR properties are theoretically guaranteed. Numerical ex-
amples indicate their significant performance improvements
over existing approaches.

The remainder of the paper is organized as follows. Section
II formulates the hypotheses testing problem and its canonical
form. Section III details the invariance analysis. Section IV
focuses on the design of novel detectors, also providing an
algorithm for the maximum likelihood estimate (MLE) under
the H1 hypothesis. Simulation results appear in Section V,
followed by conclusions in Section VI.
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II. PROBLEM FORMULATION

Consider a radar system equipped with N2 receive channels
transmitting a coherent burst of N1 pulses. In each pulse
repetition interval, the radar acquires H range samples to ade-
quately cover the target range interval, yielding data snapshots
x0
i ∈ CN×1, i = 1, . . . ,H , where N = N1N2. Thus, the

range-distributed target detection problem addressed in this
study can be formulated in terms of the binary hypothesis test{

H1 : x0
i = αi(p1 ⊗ p2) + d0

i ,

H0 : x0
i = d0

i ,
i = 1, . . . ,H, (1)

where p1 ∈ CN1×1 and p2 ∈ CN2×1 represent unit-norm
temporal and spatial steering vectors, respectively; αi ∈ C, i =
1, . . . ,H , are unknown deterministic amplitude parameters;
and d0

i ∈ CN , i = 1, . . . ,H , are disturbance random vectors
independent and identically distributed as CN (0,M0

1 ⊗M0
2 ),

with M0
1 ∈ HN1

++ and M0
2 ∈ HN2

++. As customary, it is
also assumed that a set of secondary (training) data x0

i , i =
H+1, . . . ,H+K, is available. These secondary data contain
no useful target signal but share the same disturbance charac-
teristics as the primary data.

To proceed further (without loss of generality), let us
perform a coordinate transformation on the gathered data.
Define a unitary matrix Q = Q1 ⊗ Q2, where Q1 and Q2

are chosen such that Q1p1 = e1 and Q2p2 = e1. Rotate
the axes using Q, yielding transformed data xi = Qx0

i and
di = Qd0

i , for i = 1, . . . ,H +K. Then, Problem (1) can be
equivalently written in a canonical form{

H1 : xi = αie1 + di,

H0 : xi = di,
i = 1, . . . ,H. (2)

Note that {di}H+K
i=1

i.i.d.∼ CN (0,M1 ⊗M2), where Mj ≜
QjM

0
j Q

H
j , j = 1, 2.

To simplify notations, let us define the primary and sec-
ondary data matrices respectively as

XH =
[
x1 · · ·xH

]
, XK =

[
xH+1 · · ·xH+K

]
, (3)

and their corresponding index sets as H = {1, . . . ,H} and
K = {H +1, . . . ,H +K}. Let Xall ∈ CN×(H+K) denote the
entire data matrix, i.e., Xall = [XH,XK]. Further, define

Xi = unvecN2,N1
(xi), i = 1, . . . ,H +K, (4)

Notations—Throughout this paper, scalars are denoted by regular letters,
vectors by boldface lowercase letters, and matrices by boldface uppercase
letters. CM×N is the set of M × N complex matrices. HN

++ is the set
of N ×N positive definite Hermitian matrices. Symbols (·)T, (·)∗, and (·)H
represent transpose, complex conjugate, and conjugate transpose, respectively.
0 denotes a null vector or matrix of appropriate size. e1 is an elementary
vector of appropriate dimension, with 1 at the first entry and 0 otherwise.
The Euclidean norm of a vector a is written as ∥a∥. Matrix operations such
as determinant, exponential of the trace, Frobenius norm, and vectorization of
a matrix A are denoted by |A|, etr(A), ∥A∥F, and vec(A), respectively. For
a matrix A ∈ Hn

++, chol(A) denotes its unique upper Cholesky factor. For a
set A, |A| denotes its cardinality. ⌊x⌋ is the floor function for the real number
x. The symbol ∼ denotes “distributed as,” and i.i.d.∼ means “independent and
identically distributed (i.i.d.).” x ∼ CN (µ,Σ) means that x is a complex
circularly symmetric Gaussian vector with mean µ and covariance Σ.

where unvecN2,N1(·) reshapes a vector of size N into an N2×
N1 matrix, serving as an inverse operation of the vec stacking.

III. GROUP INVARIANCE STUDY

A key challenge in the hypothesis testing problem (2) lies
in handling the nuisance parameters (M1,M2) and achieving
the desirable CFAR property. The principle of invariance [11],
[19] addresses this challenge by focusing on decision rules
enjoying some symmetry (or mathematically, invariance) un-
der a specific group. This symmetry facilitates a reduction on
the dimensionality of the parametric space, thereby potentially
ensuring the CFAR property.

Leveraging this principle, we first identify an appropriate
transformation group that preserves the structure of Problem
(2) and effectively compresses the null parameter space into a
single orbit. Subsequently, an MI, which plays a fundamental
role in group invariance analysis as any invariant test must
functionally depend on it, is obtained. To further character-
ize invariant tests, an induced MI is established, precisely
representing the reduced parameter space upon which the
distribution of any invariant test depends. It allows to verify
that the invariance implies CFARity.

A. Transformation Group

Let Ln denote the set of all n×n invertible upper triangular
matrices with positive real diagonal entries, and Un the group
of n-dimensional unitary matrices. Define the direct product
of groups as T ≜ LN1

×LN2
×UH,K , where

UH,K =

{[
UH 0
0 UK

] ∣∣∣UH ∈ UH ,UK ∈ UK

}
. (5)

Note that T also forms a group under the composition
operation ◦ defined as (L1,L2,UH,K) ◦ (L′

1,L
′
2,U

′
H,K) =

(L′
1L1,L

′
2L2,UH,KU ′

H,K). This group leaves the hypothesis
test problem (2) invariant under the action

t(Xall) = (L1⊗L2)XallU , ∀t = (L1,L2,UH,K) ∈ T . (6)

as it can be readily verified that these transformations preserve
the Gaussian distribution, the Kronecker covariance structure,
and the partition of the parameter space.

B. Maximal Invariant and Induced Maximal Invariant

This subsection derives the MI with respect to T and the
corresponding induced MI in the parameter space. It is worth
noting that MIs are not unique, but all MIs are equivalent.

To obtain a meaningful MI, we begin by examining a com-
monly used estimator for the Kronecker-structured covariance
matrix: the Kronecker MLE. Let I ⊆ H ∪ K. Based on a
subset of observations {xi}i∈I that are assumed to be free
of target signal, the optimal first-order conditions suggest that
the Kronecker MLE of (M1,M2), if it exists, satisfies the
following equations [20], [21]

M1 =
1

N2I

∑
i∈I

XT
i M

−T
2 X∗

i ,

M2 =
1

N1I

∑
i∈I

XiM
−T
1 XH

i ,
(7)
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where Xi ∈ CN2×N1 is defined in (4), and I ≜ |I| ≥
⌊N1/N2 + N2/N1⌋ + 1 so as to guarantee the existence and
uniqueness of the Kronecker MLE [22], [23] . The solution to
(7) can be efficiently computed using the so-called “flip-flop”
algorithm [20], [21], [24]. The Kronecker MLE obtained from
{xi}i∈I is denoted as (M̂1,I ,M̂2,I). Specifically, we can take
I = K, or I = H ∪K under H0.

Proposition 1: An MI with respect to T is given by{
SH(Xall),SK(Xall)

}
, where

SH(Xall) = M̂−1/2XHXH
H(M̂−1/2)H, (8)

SK(Xall) = M̂−1/2XKX
H
K(M̂

−1/2)H, (9)

with M̂−1/2 = chol(M̂−1
1,K)⊗ chol(M̂−1

2,K).
Invariance not only reduces the dataset to an MI statistic but

also shrinks the parameter space. Let α = [α1, · · · , αH ] ∈
C1×H . The transformation group T induces the following
action on the parameter space:

t̄(α,M1,M2) =
{
ℓ1,11ℓ2,11αUH ,L1M1L

H
1 ,L2M2L

H
2

}
,

where ℓi,11 denotes the (1, 1)-th entry of Li, for i = 1, 2, and
UH is the upper left block of U ∈ UH,K . The set of all such
induced transformations constitutes a group, denoted as T .

Proposition 2: An induced MI, i.e., an MI with respect to the
induced group T acting on the parameter space (α,M1,M2),
is given by

sparm =
∥α∥2

m1,1·2m2,1·2
, (10)

where mj,1·2 denotes the Schur complement of the (2, 2)-block
in Mj according to the following partition

Mj =

[
mj,11 mj,12

mH
j,12 Mj,22

]
, j = 1, 2;

i.e., mj,1·2 = mj,11 −mj,12M
−1
j,22m

H
j,12, for j = 1, 2.

Note that the induced MI sparm reduces to zero under
H0, thereby ensuring the CFAR property for each invariant
detector.

IV. DETECTOR DESIGN

This section focuses on the design of adaptive detectors
for Problem (2). The multiple (intrinsic) dimensions of the
maximal invariant suggest that in general no uniformly most
powerful invariant (UMPI) test exists for this problem1.

The invariant detection framework developed in Section III
provides a clear route to CFAR detector design: it is possible
to design detection strategies according to well-established
criteria (such as GLRT, Rao test, and Wald test) which
are invariant under transformations that leave the hypothesis
testing problem itself invariant (possibly under some mild
technical conditions) [3], [26]. Moreover, the CFARity of other
devised detectors (e.g., according to the well-known two-step
design paradigm) can be claimed by expressing them via MI.

1In this respect, note that as H = 1 and N2 = 1, Problem (2) boils down
to the unstructured case, where the UMPI does not exist [25].

A. Two-Step Adaptive Detector

When the covariance matrix is perfectly known, detectors
established based on the GLRT, Rao test, and Wald test
criteria have been derived in [27]–[29]; remarkably, under
this ideal condition, all three detectors coincide. According
to the widely adopted two-step strategy, the detectors become
adaptive by replacing the unknown covariance M1 ⊗ M2

with its Kronecker MLE, (M̂1,K,M̂2,K), computed from the
secondary data.

Specifically, substituting the MLE (M̂1,K⊗M̂2,K) into the
ideal architectures yields the following unified expression for
the two-step GLRT / Wald test / Rao test statistics:

eT1(M̂1,K ⊗ M̂2,K)
−1XHXH

H(M̂1,K ⊗ M̂2,K)
−1e1

eT1(M̂1,K ⊗ M̂2,K)−1e1

= eT1SH(Xall)e1, (11)

which is a function of the MI component SH. Consequently,
by the invariance analysis of Section III, this two-step adaptive
detector possesses the CFAR property.

B. One-Step GLRT

This subsection considers the one-step GLRT for (2), which
is formulated according to

TGLRT(Xall) =

max
α,M1,M2

f(Xall;α,M1,M2 | H1)

max
M1,M2

f(Xall;M1,M2 | H0)
, (12)

where, for b ∈ {0, 1},

f(Xall | Hb) =[
πN |M1 ⊗M2|

]−(H+K)

etr

{
− (M1 ⊗M2)

−1

[ ∑
h∈H

(xh − bαhe1)(xh − bαhe1)
H +

∑
k∈K

xkx
H
k

]}
.

Evidently, the Kronecker MLE given by (7) with I = H∪K
is the solution to the optimization of the likelihood function
under H0. As a result,

max
M1,M2

f(Xall|H0) ∝
∣∣M̂1,H∪K ⊗ M̂2,H∪K

∣∣−(H+K)
. (13)

Under H1, the optimization can proceed via an alternating
maximization scheme:

α(t) = argmax
α

f(Xall;α,M
(t−1)
1 ,M

(t−1)
2 | H1)

=
eT1(M

(t−1)
1 ⊗M

(t−1)
2 )−TXH

eT1(M
(t−1)
1 ⊗M

(t−1)
2 )−1e1

, (14)

and

(M
(t)
1 ,M

(t)
2 ) = argmax

(M1,M2)

f(Xall;α
(t),M1,M2 | H1), (15)

By the first-order condition, (15) can be solved using a
similar flip-flop algorithm as for (7) with the dataset {xh −
α
(t)
h e1,xk}k∈K

h∈H. Algorithm 1 summarizes the procedure to
compute the MLE under H1, which demonstrates promising
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Algorithm 1: Algorithm for the MLE under H1

Input: {xh,xk}, tolerance δ, maximum iterations nit.
Output: α̂,M̂1,H1

,M̂2,H1
.

1 Initiate M
(0)
1 = M̂1,K,M

(0)
2 = M̂2,K, t = 0;

2 repeat
3 Compute α(t) using (14);
4 Set X̃h = unvecN2,N1(xh − α

(t)
h ), for h ∈ H;

5 Set X̃k = Xk, for k ∈ K;
6 Compute (M

(t)
1 ,M

(t)
2 ) by solving the following

equations using the “flip-flop” algorithm (initiated
with (M

(t−1)
1 ,M

(t−1)
2 )):

7


M1 =

1

N2(H +K)

∑
i∈H∪K

X̃T
i M

−T
2 X̃∗

i ,

M2 =
1

N1(H +K)

∑
i∈H∪K

X̃iM
−T
1 X̃H

i ,
;

8 t← t+ 1;
9 until ∥M (t)

1 −M
(t−1)
1 ∥F + ∥M (t)

2 −M
(t−1)
2 ∥F ≤ δ

or t > nit;
10 return α̂ = α(t),M̂1,H1 = M

(t)
1 ,M̂2,H1 = M

(t)
2 .

empirical performance in our numerical examples under the
sample size constraint H +K ≥ ⌊N1/N2 +N2/N1⌋+1. The
maximized likelihood function under H1 is given by

max
α,M1,M2

f(Xall|H1) ∝
∣∣M̂1,H1 ⊗ M̂2,H1

∣∣−(H+K)
. (16)

Then, the one-step GLRT given by (12) has the following
expression (neglecting some irrelevant constants):

TGLRT(Xall) ∝

(∣∣M̂1,H∪K ⊗ M̂2,H∪K
∣∣∣∣M̂1,H1

⊗ M̂2,H1

∣∣
)(H+K)

. (17)

Notably, the one-step GLRT indeed corresponds to the stan-
dard GLRT for Problem 2, and thus, by [26], it is an invariant
test with respect to T . Consequently, it achieves the CFAR
property (assuming convergence of the algorithm and unique-
ness of the solutions) by the results established in Section III.

V. NUMERICAL EXAMPLES

This section presents numerical results to assess the perfor-
mance of the proposed detectors. Consider a pulsed Doppler
radar with N2 = 5 uniformly spaced array elements, and
let the number of pulses per coherent processing interval be
N1 = 4. The spatial steering vector at spatial frequency fs
is given by p2(fs) = 1√

N2
[1, eı2πfs , . . . , eı2π(N2−1)fs

]T
,

and the temporal steering vector at Doppler frequency fd
is p1(fd) = 1√

N1
[1, eı2πfd , . . . , eı2π(N1−1)fd

]T
. The covari-

ance matrix of the disturbance d0
i is σ2

c (M
0
1 ⊗M0

2 ), where
M0

1 and M0
2 are Toeplitz matrices with entries ρ|m−l| and

ρ|m−l|2e−ı2π·0.05(m−l), respectively, and σ2
c is adjusted to

achieve a desired clutter-to-noise ratio (CNR).
Fixing H = 4 and setting the nominal false alarm rate to

Pf = 10−4, we consider the following typical sample sizes of
the secondary data:

• No secondary training data case: K = 0 ;
• Sample-starved case: K = 3 ;
• Moderate sample size case: K = 30.
The abbreviations of the considered detectors and their

implementation condition are listed below:
• KP-GLRT2S: the two-step test given in (11), applicable

for K ≥ ⌊N1/N2 +N2/N1⌋+ 1;
• KP-GLRT1S: the one-step GLRT given in (17), applica-

ble for H +K ≥ ⌊N1/N2 +N2/N1⌋+ 1;
• U-GLRT1S, U-GLRT2S, and U-GASD: classical unstruc-

tured detectors proposed in [27], [28], applicable only for
K ≥ N1N2;

• Clairvoyant benchmark: the ideal two-step GLRT with
perfect knowledge of M1 ⊗M2.

Fig. 1 shows the empirical false alarm rates (Pf ) for K = 3,
demonstrating the CFAR behavior of the proposed detectors
in response to variations in the correlation parameter ρ. This
also validates the theoretical CFAR analysis in Section IV.

-0.99 -0.9 -0.7 -0.5 -0.3 0 0.3 0.5 0.7 0.9 0.99
0

0.5

1

1.5

2
10

-4

Fig. 1. Actual Pf curves with the nominal false alarm rate 10−4, K = 3,
fd = 0.1, and ψ = 0.

Furthermore, we evaluate the detection probabilities of the
considered detectors versus the Signal-to-Clutter Ratio (SCR)
under different training data sizes. The SCR is defined as

SCR = E(∥α∥2)
(
p1 ⊗ p2

)H[
σ2
cM

0
1 ⊗M0

2

]−1(
p1 ⊗ p2

)
,

where the target amplitude vector is simulated as α =
a0√
H
[1, . . . , 1], with a0 ∼ CN (0, σ2

s). Fig. 2(a) considers
the case K = 0 (i.e., no secondary training data), where
only the KP-GLRT1S can operate effectively, and it displays
satisfactory performance in the plot. Fig. 2(b) (K = 3)
shows that the KP-GLRT1S significantly outperforms the KP-
GLRT2S, highlighting the benefit of jointly exploiting the
primary and secondary data. Fig. 2(c) (K = 30) compares
the proposed Kronecker-structured detectors with conventional
detectors based on unstructured covariance matrix estimators.
The KP-GLRT1S and the KP-GLRT2S show comparable
performance in the moderate sample size case. These un-
structured competitions exhibit a performance gap exceeding
6 dB compared to our proposed detectors, which effectively
leverage the Kronecker structure, thus requiring fewer samples
to achieve a high detection probability.

VI. CONCLUSIONS

In this paper, we have explored the detection of range-spread
targets in Gaussian disturbance with Kronecker structured
covariance matrix. After transforming the original hypothe-
ses testing problem into its canonical form, we identified a
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(a) K = 0
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(b) K = 3
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(c) K = 30

Fig. 2. Pd versus SCR with H = 4, σ2
c = 30 dB, ρ = 0.9, fd = 0.1, and ψ = 0.

transformation group T whose action preserves the problem
structure. This invariance effectively compresses the nuisance
parameters, ensuring that invariance under T implies the
CFAR property. With respect to T , an MI and an induced
MI have been provided. Subsequently, we derived the two-
step adaptive detector which incorporates the Kronecker MLE
from the secondary data, as well as the one-step GLRT that
applies the GLRT test criterion directly to the entire dataset.
Both the detection statistics are invariant under T , as verified
by one being expressed as a function of the MI and the
other by an invariance property of the standard GLRT test
criterion. Thus, their CFAR properties are ensured according
to the invariant detection framework established in this paper.
Numerical results demonstrate that these detectors maintain
robust CFAR behavior and confirm the performance gains
offered by exploitation of the Kronecker covariance structure,
particularly when the training data set is limited.
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