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Abstract—A general problem in radar is to detect whether the
received signal contains a specific signal of interest or not. We
focus on one of the most widespread detectors: the Normalized
Matched Filter. To be more realistic, we consider the case where
the target can be off-grid. Currently, different methods exist to
perform the off-grid Normalized Matched Filter test, but their
detection performances are degraded if the noise is not white. In
this paper, a new method based on reparametrization is proposed.
While having a computational cost similar to state-of-the-art
techniques, its detection performances are always better.

Index Terms—Radar, Detection, Off-grid, Normalized Matched
Filter, Reparametrization

I. INTRODUCTION

A general problem in signal processing, appearing in many
applications, such as radar, telecommunications, and seismol-
ogy, is to detect whether a signal contains a specific signal of
interest, hypothesis (#;) or not, hypothesis (H). Detection
theory provides different ways to solve such problems, but the
likelihood ratio test (LRT) is the most common [1]. Performing
the LRT requires the knowledge of all the scene parameters,
which is often not possible. Hence, the Generalized LRT
(GLRT) was proposed to overcome this issue, the principle
of which is to replace the scene’s unknown parameters with
their maximum likelihood estimates [2].

We mainly focus on the monotarget Normalized Matched
Filter (NMF) [3], also called adaptive cosine estimator [4], a
very popular detector in the radar literature. In general, we do
not know the parameters of the target and the objective is to
compute the maximum of the NMF over the entire parameter
space: the off-grid GLRT. Hence, the standard solution in the
literature is to perform the NMF on a grid of parameters with
possibly a monopulse estimate for refinement [5] in order to
find the target position and to finally consider the maximum
of all these tests. This implementation is very widespread both
for simplicity reason and the fact that in radar, computational
power and time are constrained.

To the best of our knowledge, the grid samples are regularly
spaced because the false alarm rate of the on-grid NMF is
constant on the grid points, so there was no particular reason
to do otherwise. Moreover, in the white noise case, such
vectors are orthogonal and define a partition of the space on
an orthonormal basis, so without any additional information,
taking a regular grid in the non-white noise case seems
reasonable.
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In practice, the targets are not on the grid, and the NMF is
not efficient in detecting off-grid targets [6]. Hence, the grid
points should be carefully chosen otherwise the NMF may
fail. Moreover, it has recently been shown that the false alarm
rate of the NMF, considering continuous intervals instead of
points, is not uniform on the whole parameter space when the
noise is not white anymore [7]. These two points suggest that
more attention should be paid to the choice of the grid and
that a regular grid may not be optimal.

A solution based on a regular grid has been proposed in
[8] and allows one to ensure that the target is detected when
the Signal-to-Noise Ration (SNR) is high enough. However,
it still suffers from some drawbacks at lower SNR. In this
paper, we propose a strategy to compute the off-grid NMF
taking into account the impact of non-white noise. It is based
on a reparametrization which induced a uniform distribution
of the probability of false alarm. We show that such a choice
is relevant as it also allows to take into account the main lobe
deformation when the noise is not white. We show that our
method yields the best known approximation of the true off-
grid GLRT with a very low computational cost.

The paper is organized as follows. Section II formulates
the problem. In Section III, we propose a new method for
defining a grid of test points as a function of the noise
covariance matrix. Section IV proposes a new way to perform
the NMF-GLRT. Finally, Section V includes numerical
experiments to highlight the benefits of this new method.

Notations: Italic type indicates a scalar quantity, lower case
boldface indicates a vector quantity, and upper case boldface
indicates a matrix or tensor. The transpose and transpose
conjugate operators are . and I respectively. x ~ CN(u, X)
is a random complex circular Gaussian vector with mean
vector p and covariance matrix 3. The matrix trace operator is
denoted as Tr(.). The derivative of a single parameter function
f is denoted f’ and the second-order derivative f”'.

II. PROBLEM FORMULATION

In radar detection, the problem is to choose between two
scenarios: the received signal, modeled as a complex /N-vector
¥, is either noise n or contains a signal of interest «a(#) plus
noise n. Formally, it means deciding between two hypotheses:

{ Ho:y=n, (noise)

Hi:y=aa(f)+n, (signal + noise) M
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where n ~ CN (0,062R). R is assumed to be known while
its power o2 is not known [9], a € C is the target unknown
amplitude, a(f) is a complex steering vector related to the
target Doppler bin, defined as:

1 2im0
a(f) \/N(l,e e
with  unknown and belonging to © = [0, 1].

The distribution of y under H, depends only on Ag =
{o?} while the distribution of y under H; depends on A\; =
{a, 02,0}

The generalized likelihood ratio test (GLRT) consists in
evaluating the ratio between two maximum likelihoods: the
maximum likelihood of y assuming #; (A1), over all possible
values of A; and the maximum likelihood of y assuming
Ho(Xo), over all possible value of Ag:

. T
eQ’LTr(N—l)@) ’ (2)

max f3,(¥) g,

= > WP, 3)
max Froy) o

leading to the following test:

2 M1

ANME-GLRT = max s"(0)u|” = w?, “4)
0
) R—1/2 (9 R—1/2y
with s(6) HR 72 a(0)| and u = m

Due to the presence of the maximum over 6, the statistic
of this NMF-GLRT under H, is complicated to derive. In [7],
following a geometric approach [10], the authors have derived
the expression of P, = P(Anmr.cLrr > w?|Ho) as a function
of w. This approach allows to understand the role of R more
deeply.

Notice that testing only one single value of 6, leads to the
well-known Normalized Matched Filter (NMF):

2
Anwir (0) = |s7(0)ul”, &)
whose P,-threshold relationship is given by:
Pranwr = (1 —w?)NV 1, (6)

The NMF (5) has a constant false alarm rate, in the sense that
the Pr,-threshold relationship is independent of R and of the
testing point 6. This property is not at all verified by the NMF-
GLRT. The Pj,-threshold relationship of the NMF-GLRT has
been shown to depend on R in [7]. Omitting the edge effect
term which is irrelevant when © = [0, 1], it may be shown
that this relation can be written as:

_ 2\(2N—-3)/2
P~ @20 /v(@)de, )
o

2N -1
/217
()
1/2

v(0) = [Is' @) + (7 (0)s'©0)?] ",
971/2

= [ -ls"eser] T, ®

where v(6):

due to the fact that s(f)s(§) = 1 implying that
(SH(G)S(H))/ = 0 and so Re (s (0)s'()) = 0. Equation (7)
is a rewriting of [7], equation (15), considering directly the
complex vector s(f) instead of dividing it into its real and
imaginary parts.

In (7), the contribution v(#)dé to the P, is proportional to
the probability of false alarm in [6,0 + df]. When R = 1, it
is easy to check that v(0) is constant, so that the false alarms
are regularly distributed over [0,1]. However, when R # I,
v(#) is no more constant and the density of false alarms is

no more uniform over [0, 1[. In this sense, the action of R

can thus be understood as a distortion of the manifold s(©) £

{s(0),0 € ©}. Hence, the false alarm probability depends on
R

Next, in order to implement the NMF-GLRT, we need to
find the maximum of Anxymr (.) over ©. The general procedure
to do so is the following one:

1) Define a grid of test points {6;}.

2) Estimate the target location between test points, provid-

ing estimators {gél}
3) Compute the Anwmr (.) test on {9}} and get the maxi-
mum of it.

In the next section, we propose a new way to define the
grid taking into account the covariance matrix R, and we see
in Section IV how the estimates ; are obtained.

III. A NEW GRID CONSTRUCTION TAKING THE
COVARIANCE MATRIX INTO ACCOUNT

To compute the NMF-GLRT, equivalent to the maximum of
the NMF over a continuous parameter space, the NMF has to
be evaluated for discrete values of 6 on a grid on ©. This grid
is usually regular over ©. However, testing regular values of
f is not equivalent to testing points regularly spaced on the
manifold s(©), when R # L

A. The distortion of the manifold

The distortion of the manifold depends on the noise covari-
ance matrix R and has an impact on the shape of the main
lobe corresponding to the true parameter 8y of the target. This
can be evaluated mathematically using the ambiguity function
Ap,(0), defined as the NMF test response at ¢ for a target
characterized by parameter 6y:

Is"(0) s(60)|” )
= Tr(S(0) S(0o)) ,

Ag, (0)

where S(6) = s(6) s (). So the shape of the main lobe is
locally linked to the second-order derivative Ag (6p).

As an example, Figure 1 shows a Power Spectral Density
of the noise (directly connected to the covariance matrix R
through Wiener Kintchin’s Theorem). With such a noise, we
get different lobe shapes for different values of 6, as described
on this figure.

The most common case in radar detection is to face a
white noise, meaning that R = I. In this case, a regular
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Figure 1. Power Spectral Density (PSD) and its corresponding lobe shapes.

grid on ©: (01,02, ...,0)) corresponds to vectors on s(©):
(s(01),...,8(0ar)) (usually, one chooses M = N, so that
the grid step is equal to the conventional Doppler resolution).
Please notice that in this case, the vectors {s(6;)} are regularly
spaced on the manifold described by s(O).

To the best of our knowledge, even in colored noise when
R # I, the procedure commonly used in radar is still to
compute the NMF over a regular grid on ©. In that case, we
encounter distortion because v(6) is no longer constant with
respect to the usual parametrization of ©.

As a consequence, although the grid (61,6s,...,03) is
regularly spaced over ©, the test vectors {s(f;)} are not
regularly spaced on the manifold anymore. A solution we
propose to circumvent this issue is to define a new grid on
the parameter space ©, which has the property to correspond
to points regularly spaced on the manifold.

B. A new irregular grid

Let us define the function £(.) as follows:

0
E:Ge@%x:/v(u)du. (10)
0
¢ takes values in the interval £ = [0, L], where
1
Ly =¢(1) = / v(u)du . (11)
0

Once we have computed Ly, we can slice it into M portions

of the same size such that (£(6;41) — €(6;)) =

The proposed procedure provides a set of values {6;} that
are not necessarily regularly spaced on ©, but their corre-
sponding vectors {s(6;)} are regularly spaced on s(©). This
allows us to properly manage the distortion of the manifold.

tot

C. Impact on the Py, and on the lobe curvature

Concerning the Py, by construction and due to (7), on each
interval [6;,0;1], the P, is constant.

We will now focus on the lobe shape and prove that
the proposed reparametrization provides main lobes that are
locally identical. This is the object of the following Lemma.

Lemma 1. The second-order derivative of Ag, ol Vinx =z,
such that (=1 (xq) = 0y, is independent of 0.

Proof. Since s(#) is normalized, we have for any 6:

T(S(6)S(8)) = 1. (12)
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Figure 2. Reparameterized lobe shapes.

By deriving twice (12), we get:

{TI(S’(G) S(0)) =0,

Te (S”(0)S(0))) + Tr (S'(0)S'(0)) =0 . (1Y)

Hence, since Ag (0) = Tr(S"(0)S(6p)), we can deduce
that:

Al@lo (90) = —TI‘(S/(QQ) S/(Ho)) . (14)
Since we have:
S'(6) =s'(6)s"(0) +s(0) s (6), (15)

we can use the linearity of the trace and its invariance with
respect to circular permutations, as well as the fact that
sf(6)s/() is pure imaginary (see the end of Section II) so
that (SH(G)S’(H))2 is real, to get:
Tr(S'(0) S'(0)) = 2 (s"(0) s'(0) + (s (0)s'(9))?) . (16)
Now, we just need to use the chain rule and the fact that
Ajp, (0o) = 0 to see that:

b (o)) = 2 [() o)) s 60

+(s"(00) 8 (00))°] (17)
— 9 [(z*l)’(a;o)]zv?(ao). (18)
Note that by definition of the function ¢~1, we have
(6—1)’ (z0) = v 05_11(170) N U(éo) ’ 19
where v(6p) is given by (8). We finally get:
by (£ (@0)) = —2. (20)
O

Using this Lemma, we can conclude that all the main lobes
have locally the same shape in the reparameterized space.
Thus, the criterion initially based on the P, has interesting
properties for the detection probability.

In the next section, we analyze different approaches to
evaluate the NMF-GLRT.
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IV. A CONTINUOUS APPROACH USING JOINT
ESTIMATION-DETECTION TECHNIQUES

The final objective is to perform the NMF-GLRT. The gen-
eral procedure to do so (without using to much computational
power and time) is described at the end of Section II and
different approaches are now presented.

A. Standard monopulse processing

A popular approach in radar context is the monopulse
technique [5]. It is a cost efficient approximation of the
maximum likelihood of the target parameter. The principle is
the following one:

1) The grid is initialized with regularly spaced values

{61,...,0n} with a step &y =
Doppler resolution.

2) The parameter estimations {HAZ} between two grid points
are performed based on the monopulse principle:

1 1

N corresponding to the

éi _ 0; + 611 n @ANMF (9i+1)j — AnmE (Gz)i @
2 2 A (0i41)7 + Anwir (67)2

3) Since we need to perform the NMF test on {f;} in
order to estimate {6;}, the approximation of the NMF-GLRT
corresponding to this method corresponds to:

ANMF (0) .

max
0e{0:3u{0; }

As shown in the numerical part, when the covariance matrix
R is different from the identity matrix I, the estimations 01 are
not really relevant since the distortion of the manifold is not
considered at all. Thus, even when the SNR tends to infinity,
some targets are not detected.

AnmF-GLRT = (22)

B. A first way to face distortion: estimate before distortion

To circumvent the estimation issue in the case R # I, the
method proposed in [8] is the following one:

1) Same regular grid as in IV-A.

2) The parameter estimations {él} between two grid points
are performed based on the monopulse principle but on the
Discrete Fourier Transform (DFT) of the signal y and a well
chosen function g:

0; 5

(s
@k (0:1) y|* + 2k (6:) y|* )
(23)
With g defined in [8], equation (9).
3) Finally, the approximation of the NMF-GLRT corre-
sponding to this method corresponds to:

ANMF-GLRT = Inax ANMmFE (9) . (24)

oe{d;}

This is a better way to estimate 6; because if we do not
introduce R in the first stage and use the DFT, the lobe shape
has not yet been modified and hence the monopulse estimation
technique is more relevant at high SNR.

However, since we do not take into account the impact of
R in the estimation part, there are still some losses especially
when the SNR is moderate.

C. Monopulse reparametrized (proposed)

In this article, we propose to address the distortion issue
by reparametrizing our manifold. Instead of working directly
in the space ©, we work in the space £ = ¢(©) and use the
function /=1 when it is necessary to go back to ©.

1) The grid is initialized with regularly spaced val-
ues {z;} on L, corresponding to irregularly spaced values
{01,...,0n} = {7 z1),...,07(zN)}, as described in
III-B. The step between two successive points z; on L is
6$ _ Ltol.

2) The estimations {&;}, between two grid points are

performed based on the monopulse principle but on the
reparameterized space with « = ¢(6):

L TP+ T
T T

0z Anmr (f_l(wiﬂ))% — A (€1 (2))
2 Anr (1 (@i41))? + A (671 (22)

3) Since we need to perform the NMF test on {¢~!(z;)} in
order to estimate {%;}, the approximation of the NMF-GLRT
corresponding to this method corresponds to:

[MES

. (25

(NI

(26)

max
xe{ml}u{il}

Anvr-GirT = AxmE (fﬁl(I)) .
Please note that the computational task of performing ¢~!
is negligible since ¢ can be tabuled (and so /! too).

V. NUMERICAL EXPERIMENTS

In this part, we compare the performance of the different
methods. We plot, for two different covariance matrices, the
detection probability of each method as a function of the
target parameter # and as a function of the SNR, defined

as SNR(a, ) = o] 5. The first covariance R;

IR-172a(6)]
corresponds to the noise Power Spectral Density plotted in
Figure 1, while the second one Ry corresponds to the matrix
R(0.95) using the classical Toeplitz model of noise clutter:

R(p) =T([Lp,....p"N '), 27)

where 7 (.) is the Toeplitz operator.

In all the experiments we performed, the proposed method
was shown to maintain constant performance, regardless of the
target parameter and the noise covariance matrix, and performs
better than the others in any context as it can be noticed in
Figures 3 and 4. Its computational cost is twice that of the
on-grid algorithm (since we perform twice more NMF tests)
and is equivalent to the state-of-the-art techniques used in the
numerical experiments.

Moreover, the P (computed using Monte Carlo experi-
ments) corresponding to the proposed strategy, in red in Figure
5, is the closest to the theoretical false alarm probability
provided in Eq.(7). This is another indicator that we are
performing the most accurate approximation of the NMF-
GLRT at a very low cost.
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Figure 3. Detection performances comparison, with R = R, using the same
threshold w? for all methods such that the theoretical Py, is 102 in (7).

VI. CONCLUSION

In this paper, we proposed a solution to the off-grid issue
faced by the NMF test. In particular, we introduced an irregular
test grid strategy and a joint estimation-detection method.
Our main contribution was to consider the deformation of
the manifold induced by the covariance matrix to provide
an efficient detection method relying on a reparametrization.
The numerical experiments show that we perform the best
approximation of the NMF-GLRT performances at a very low
cost. Finally, this procedure can be directly extended to the off-
grid Matched Filter using the exact same reparametrization.
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