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Università di Pisa
Pisa, Italy

danilo.orlando@unipi.it

3rd Giuseppe Ricci
Dipartimento di Ingegneria dell’Innovazione
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Abstract—This paper addresses the problem of detecting
multidimensional subspace signals in disturbance (interference
plus noise) of unknown covariance. It is assumed that a pri-
mary channel of measurements, possibly consisting of signal
plus disturbance, is augmented with a secondary channel of
measurements containing only disturbance. The interference plus
noise terms in these two channels share an unknown covariance
matrix; as to the signal it belongs to a subspace known only by its
dimension and consecutive visits to the subspace are constrained
by a prior distribution. The performance of the related detector is
extensively investigated in new scenarios that have not been taken
into consideration so far. Specifically, these scenarios provide the
radar engineer with further insights about the detector behavior
and comprise a mismatch between the nominal (that is a design
parameter) and actual (that depends on data) subspace dimension
as well as the case where the radar system is under the attack
of a noise-like jammer.

Index Terms—Adaptive Detection, Subspace Model, General-
ized Likelihood Ratio Test.

I. INTRODUCTION

In real radar systems equipped with an array of sensors,
the array mainbeam is steered by applying specific weights to
each tile. However, very often, an uncertainty related to the
array pointing direction may exist due to hardware, mutual
coupling, calibration residuals, and so on [1]. The subspace
paradigm arises from the need to account for this uncertainty
and to prevent detection performance degradation due to the
presence of mismatched signals [2]. The general problem of
matched and adaptive subspace detection of point-like targets
in Gaussian and non-Gaussian disturbance has been addressed
by many authors, beginning with the seminal work of Kelly
and Forsythe [3], [4]. The innovation of [3] was to introduce a
homogeneous secondary channel of signal-free measurements
whose unknown covariance matrix was equal to the unknown

covariance matrix of primary (or test) measurements. Like-
lihood theory was then used to derive what is now called
the Kelly detector. In [4], several important generalizations
have been addressed including the case of multiple primary
measurements. These papers were followed by other important
contributions [5]–[14]. However, most of these works address
adaptive detection in what might be called a first-order (signal)
model for measurements. That is, the measurements under
test may contain a signal in a known subspace embedded
in Gaussian disturbance of unknown covariance, but no prior
distribution is assigned to the location of the signal in the
subspace.

The first attempt to replace this model by a second-order
(signal) model was made in [15], where the authors used
a Gaussian model for the signal. The covariance matrix for
the signal was constrained by a known subspace model. In
[15], a detector based on the estimate-and-plug (EP) strat-
egy was proposed. The EP strategy is a two-step design
approach: first the generalized likelihood ratio test (GLRT)
is implemented based on primary measurements only, herein
assuming a known covariance matrix up to a multiplicative
factor. Then the detector is made fully adaptive by estimating
the structure of the covariance matrix based on the secondary
measurements.

The main goal of the current paper is the analysis of a
decision scheme aimed at detecting a Gaussian signal (second-
order) belonging to a subspace known only by its dimension,
recently introduced in [16]. Specifically, this paper will extend
the analysis of such a detector contained in [17] to the case
where a mismatch exists between the nominal and the actual
subspace dimension. In addition, the detection performance is
investigated under the action of a cover jammer that affects
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both primary and secondary channels. Our results are moti-
vated by the problem of detecting range-spread targets from
an active radar system.

The remainder of this paper is organized as follows. The
next section provides a formal statement of the second-order
detection problem. Then, Section III briefly recalls the struc-
ture of the decision scheme. The analysis under mismatch and
jamming is provided in Section IV, whereas Section V draws
concluding remarks and describes future research tracks.

A. Notation

In the sequel, vectors and matrices are denoted by bold-
face lower-case and upper-case letters, respectively. Symbols
det(·), Tr (·), etr {·}, (·)T , (·)†, and (·)−1 denote the determi-
nant, trace, exponential of the trace, transpose, conjugate trans-
pose, and inverse, respectively. A1/2 will denote the square
root of a Hermitian, positive semidefinite matrix A while
A−1/2 is the inverse of the square root of a Hermitian, positive
definite matrix A. As to numerical sets, C is the set of complex
numbers with | · | the absolute value of z ∈ C, CN×M is the
Euclidean space of (N ×M)-dimensional complex matrices,
and CN is the Euclidean space of N -dimensional complex
vectors. In and 0m,n stand for the n× n identity matrix and
the m×n null matrix. ⟨H⟩ denotes the space spanned by the
columns of the matrix H ∈ CN×r. Given a1, . . . , aN ∈ C,
diag (a1, . . . , aN ) ∈ CN×N indicates the diagonal matrix
whose ith diagonal element is ai. We write z ∼ CNN (x,Σ)
to say that the N -dimensional random vector z is a complex
normal random vector with mean vector x and covariance
matrix Σ. Moreover, Z = [z1 · · · zK ] ∼ CNNK(X, IK⊗Σ),
with ⊗ denoting Kronecker product and X = [x1 · · ·xK ],
means that zk ∼ CNN (xk,Σ) and the columns of Z are
statistically independent. The acronyms PDF and IID stand for
probability density function and independent and identically
distributed, respectively. R̂i will denote the maximum likeli-
hood (ML) estimate of R under the Hi hypothesis, i = 0, 1
(symbols defined in Section II). The subscript is discarded in
case it is unnecessary.

II. PROBLEM FORMULATION

For subsequent developments, let us denote by ZP =
[z1 · · · zKP

] ∈ CN×KP the matrix of the measurements in
the primary channel and by ZS = [zKP+1 · · · zKP+KS

] ∈
CN×KS the matrix of the measurements in the secondary
channel. In a radar problem, the measurements are N -
dimensional vectors of space-time samples: the radar system
transmits a burst of Np radio frequency (RF) pulses and the
baseband representations of the RF signals collected at the
Na antenna elements are sampled to form range-gate samples
for each pulse; it turns out that N = NaNp. If the signal
presence is sought in a subset of KP range gates, the primary
channel consists of NKP samples. The samples corresponding
to any range gate are arranged in a column vector zk ∈ CN .
The secondary channel consists of the outputs of KS properly
selected range gates [18]. Finally, let Z = [ZP ZS ] ∈ CN×K

be the overall data matrix with K = KP +KS .

The adaptive detection problem we are interested in can be
formulated as the following hypothesis testing problem

H0 :

{
ZP ∼ CNNKP

(0N,KP
, IKP

⊗R)
ZS ∼ CNNKS

(0N,KS
, IKS

⊗R)

H1 :

{
ZP ∼ CNNKP

(0N,KP
, IKP

⊗ (HRxxH
† +R))

ZS ∼ CNNKS
(0N,KS

, IKS
⊗R)

(1)
where H ∈ CN×r is an unknown full column rank matrix,
with known rank r, r ≤ N , Rxx ∈ Cr×r is an unknown
positive semidefinite covariance matrix (whose rank is less
than or equal to r), while R ∈ CN×N is an unknown positive
definite matrix. Moreover, we suppose that KS ≥ N .

The joint PDF of primary and secondary data is given by

f1(Z;R,Rxx,H) =
etr

{
−R−1ZSZ

†
S

}
πNK

×
etr

{
−
(
HRxxH

† +R
)−1

ZPZ
†
P

}
detKP (HRxxH

† +R) detKS (R)
(2)

under H1 and it is expressed as

f0(Z;R) =
etr

{
−R−1(ZPZ

†
P +ZSZ

†
S)
}

πNK detK(R)
(3)

under H0. To derive the GLRT we have to compute the
compressed likelihoods under each hypothesis. This task is
the object of the next section.

III. DETECTOR DESIGN

Firstly, observe that the computation of the compressed
likelihood under H0 is a well-known result, see for instance
[3].

As to the likelihood under H1, it is convenient to observe
that in eq. (2) the parameters H and Rxx are both unknown,
so HRxxH

† may be replaced by the unknown covariance
matrix R̃xx. Thus, the log-likelihood under H1 can be written
as

L1(R, R̃xx;Z) = −NK log π

−KP log det(R̃xx +R)− Tr
[(

R̃xx +R
)−1

SP

]
−KS log det(R)− Tr

[
R−1SS

]
(4)

where SP = ZPZ
†
P and SS = ZSZ

†
S (and the matrix SS

is positive definite since KS ≥ N ). Notice also that the rank
of the matrix R̃xx is less than or equal to r (in fact, the
rank of HR1/2

xx is less than or equal to r). The compressed
likelihood necessary to obtain the GLRT is given by the
following theorem. The focus is on the case r ≤ KP ≤ N
although extension to KP < r is straightforward. For the proof
of the theorem see [16].

Theorem 1: Let r ≤ KP ≤ N . Denote by Γ =
diag (γ1, . . . , γN ) ∈ RN×N , γ1 ≥ . . . ≥ γN ≥ 0, the diagonal
matrix containing the eigenvalues of S

−1/2
S SPS

−1/2
S and by
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V ∈ CN×N the unitary matrix of the corresponding eigen-
vectors. Finally, let K = S

1/2
S V ∈ CN×N . The maximum of

the left-hand side of (4) can be rewritten as

L1(R̂1,
̂̃Rxx;Z) = −NK log π −NK

− 2K log |det(K)|+
N∑
i=1

[
K log

K

γi + λ̂i

+KS log λ̂i

]
with

λ̂i =

{
max

(
KSγi

KP
, 1
)
, i = 1, . . . , r,

1, i = r + 1, . . . , N.

Finally, the GLRT for homogeneous environment and un-
known subspace ⟨H⟩, referred to in the following as second-
order unknown subspace in homogeneous environment (SO-
US-HE) detector, is

L1(R̂1,
̂̃Rxx;Z)− L0(R̂0;Z)

H1
>
<
H0

η (5)

with L0(R̂0;Z) the compressed likelihood under H0 and η
the threshold to be set according to the desired probability of
false alarm (Pfa).

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION

In this section, Monte Carlo (MC) counting techniques
are used to evaluate the performance of the SO-US-HE and
this is compared to the performance of the corresponding EP
approach proposed in [17].

The probability of detection (Pd) and the thresholds to
guarantee a given Pfa are estimated over 103 and 100/Pfa

independent MC trials, respectively. In all the illustrative
examples we assume N = 16 and Pfa = 10−3, r = 2, 4,
KP = N , and KS = 1.5 ·N . The covariance matrix R of the
disturbance is

R = IN + σ2
cM c (6)

with σ2
c accounting for a clutter-to-noise ratio of 30 dB

assuming unit noise power. The (i, j)th entry of the clutter
component M c is ρ

|i−j|
c with ρc = 0.95.

In the simulated scenario, the signal component in the ith
vector zi, i = 1, . . . ,KP , is given by αiv(ϕi), with

v(ϕi) =
1√
N

[
1 ejϕi · · · ej(N−1)ϕi

]T
; (7)

the electrical angles ϕi are independent random variables
uniformly distributed on Φ = [−πβ, πβ], where β = sin θ
with θ depending on the desired value of the rank r. The
interval Φ is discretized using a step of 0.02 radians. As
to the αis, they are IID complex normal random variables,
αi ∼ CN 1(0, σ

2
α), i = 1, . . . ,KP . More precisely, we estimate

the actual rank r of the signal subspace by computing the
matrix Rβ ∈ CN×N , whose (m,n)th entry is given by [1]

Rβ(m,n) = 2βπsinc((n−m)β)

and determining the corresponding number of eigenvalues
significantly different from zero. In particular, we choose
θ = 2π(3/360) and θ = 2π(8/360) radians to obtain r = 2
and r = 4.

The performance analysis considers different scenarios:
• matched case: the assumed signal subspace dimension,

say r̃, coincides with the actual one r;
• mismatched case: the assumed subspace dimension dif-

fers from the actual one (r > r̃ or r < r̃);
• jamming scenario: the system is subjected to noise-like

jamming (NLJ) with jammer-to-noise-ratio (JNR) given
by JNR = σ2

j = 30 dB.
The results, presented in Figures 1-3, plot Pd vs the signal-

to-interference-plus-noise ratio (SINR), defined as

SINR = σ2
αTr

(
V †

PR
−1V P

)
with, in turn, V P = [v(ϕ1) · · ·v(ϕKP

)]. The figures provide
insight into the robustness of the proposed detector under
the different scenarios, comparing the performance of GLRT-
based detectors and their EP counterparts.

Particularly, the top plot of Figure 1 corresponds to the
matched case, (i.e., r = r̃ = 2). When the subspace dimension
is correct, the curves highlight that at 20 dB the Pd of the
SO-US-HE is 0.9 while that of the EP-SO-US-HE is 0.8.
Generally speaking, the EP-SO-US-HE experiences a slight
performance degradation compared to the SO-US-HE. The
bottom plot illustrates the mismatched scenario, where the
assumed subspace dimension is greater than the actual one
(r = 2, r̃ = 4). It turns out that both detectors exhibit a
small gain with respect to the perfect matched case particularly
at intermediate SINR values. This behavior can be explained
by observing the decision statistics of the two detectors. In
fact, increasing r̃ might include directions that improve the
collected energy.

Figure 2 shows a performance degradation in the mis-
matched scenario where r > r̃. Specifically, in the matched
case (r = r̃ = 4), both the SO-US-HE and the EP-SO-US-HE
achieve high Pd values at lower SINR compared to Figure 1.
Moreover, in the mismatched case (r = 4, r̃ = 2), the detection
performance is significantly worse compared to the matched
case. As a matter of fact, reducing the assumed subspace
dimension (r̃ < r) prevents the detector from capturing the full
signal structure (and, hence, energy) impairing the detection
performance.

Figure 3 investigates the impact of NLJ on the detection
performance, comparing r = 2 and r = 4 both under
matched conditions. The presence of the NLJ alters the overall
disturbance covariance matrix as follows

R = IN + σ2
cM c + σ2

jv(ϕj)v(ϕj)
†, (8)

where we recall that σ2
j > 0 is the jammer power set according

to the JNR and ϕj = π sin (2π/20) is the jammer electrical
angle. From a comparison with the previous matched case
without the action of the NLJ, it turns out that the detection
performance is approximately invariant for both values of r.
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Fig. 1. Pd versus SINR [dB]: matched case (r = r̃ = 2) at the top and
mismatched case (r = 2, r̃ = 4) at the bottom.

V. CONCLUSIONS

In this paper, we have analyzed the adaptive detection of
Gaussian subspace signals in a homogeneous environment
focusing on a second-order signal model. Our study has
extended previous analyses by considering cases where the
nominal and actual subspace dimensions do not match, as well
as scenarios involving NLJ. The impact of the subspace mis-
match depends on the scenario: reducing the assumed subspace
dimension negatively affects detection performance because
part of the signal energy is not exploited in the construction
of the decision statistic. In the opposite case, the mismatch
might lead to a slight performance improvement due to the
collection of more energy. Finally, the detector demonstrated
resilience against noise-like jamming, maintaining relatively
high detection probabilities even in the presence of strong
interference.
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