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ABSTRACT

This paper considers the estimation of a mixture of sinusoids
in an unlimited sensing framework. A modulo analog-to-
digital converter (ADC) is employed to fold back the input
signal into a bounded interval before samples are token. We
show that, for a band-limited signal, when the sampling
rate satisfies a certain condition that is closely related to the
dynamic range of the modulo ADC, the first-order difference
of the original samples can be uniquely decomposed as a
sum of the first-order difference of the modulo samples and
a constant with only three possible values. This enables us to
formulate the problem of estimating a mixture of sinusoids as
a joint sparse signal recovery and unknown integer parameters
estimation problem, which can be efficiently solved via a
mixed-integer linear program. In addition, a multi-channel
sampling architecture is employed to form a “virtual” modulo
ADC with an enlarged dynamic range. This improvement
helps reduce the sampling rate for estimating sinusoidal
mixtures. Numerical simulations are conducted to illustrate
the performance of the proposed method.

Index Terms— Parameter estimation, sinusoidal mixture,
unlimited sampling, first-order difference, mixed-integer lin-
ear program

1. INTRODUCTION

Frequency and amplitude estimation for a mixture of sinu-
soids from a finite number of samples can be found in various
applications, such as ranging and direction finding [1].
Existing solutions to this problem include traditional methods
like the MUSIC algorithm [2] and compressive sensing based
approaches [3]. For practical implementation, an analog-to-
digital converter (ADC) is employed to obtain samples of
the sinusoidal signal. However, clipping/saturation occurs
when the amplitude of the input signal exceeds the dynamic
range of the conventional ADC, resulting in potentially severe
information loss and significant performance degradation of
such solutions.

This research was supported by the national natural science foundation
of China under Grants No. 62103083.

The recently introduced unlimited sensing framework is
a promising approach to addressing the above drawback
of conventional ADCs with a limited dynamic range [4].
Specifically, a modulo ADC (M-ADC) is employed to map
the input signal to a bounded interval [−λ, λ] where λ is
the maximum dynamic range of the M-ADC. This operation
is mathematically equivalent to taking modulo of the input
signal with respect to λ, which eliminates the saturation
problem of conventional sampling systems. However, the
modulo operation is essentially a nonlinear mapping from
the input to the output, which creates a challenge in signal
processing. The problem has been extensively investigated
over the past few years, leading to a multitude of methods
including the mixture model based solutions [5–7] and the
higher-order difference (HOD) based solutions [8–11]. These
solutions, however, are sensitive to noise.

To tackle this issue, we examine the properties of the
first-order difference of modulo samples and formulate the
parameter estimation of a mixture of sinusoids as a joint
sparse vector recovery and unknown constant parameter
estimation problem. By introducing two auxiliary vectors, the
joint estimation is recast as a mixed-integer linear program
(MILP) which can be efficiently solved via a branch-and-
bound algorithm [12]. In addition, we further introduce a
multi-channel modulo sampling architecture to further relax
the requirements on sampling intervals. Simulation results
show that the proposed method outperforms the high-order
difference based approach, while the multi-channel sampling
scheme significantly reduces the required conditions for
sampling intervals.

2. PROBLEM FORMULATION

Consider the following sinusoidal mixture model

y(t) =

K∑
k=1

αke
−jωkt (1)

where t ∈ R denotes the time, K is the number of sinusoidal
components, and {αk, ωk} are respectively, the complex
amplitude and frequency associated with the kth component.
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The sinusoidal mixture signal is sampled via a M-ADC with
sampling interval ∆T , resulting in the following discrete
measurement

zm , Uλ(ym) + vm (2)

where ym , y(m∆T ), m is the sampling index, vm ∼
CN(0, σ2) is the complex additive white Gaussian noise, and
Uλ(·) is the modulo operation performed on a complex value,
which is defined as

Uλ(a) ,Mλ

(
ar
)

+ jMλ

(
ai
)

(3)

where ar and ai respectively denote the real and imaginary
parts of the complex argument a, and Mλ is a nonlinear
mapping in the real domain

Mλ : b 7→ 2λ

(〈
b

2λ
+

1

2

〉
− 1

2

)
(4)

in which 〈b〉 , b − bbc is the fractional part of b and λ ≥ 0
is the operation range of the M-ADC. The M-ADC maps an
arbitrary value into its dynamic range [−λ, λ], which avoids
the saturation/clipping in conventional ADCs.

The objective is to estimate {αk, ωk} from the modulo
measurements {zm}Mm=1. To this end, we employ the
compressive sensing framework and discretize the contin-
uous frequency parameter space into a finite set of grid
points, say P (P � K) points in total. Define ap ,
[e−jωp∆T · · · e−jωpM∆T ]T , A , [a1 · · · aP ], α ,
[α1 · · · αP ]T , y , [y1 · · · yM ]T , z , [z1 · · · zM ]T , and
v , [v1 · · · vM ]T . We can then rewrite (2) as

z = Uλ(y) + v = Uλ(Aα) + v (5)

where α is a K-sparse vector. Here we assume that
the unknown frequency components lie on the discretized
grid. It is apparent from (5) that we cannot directly apply
the compressive sensing framework to estimate {αk, ωk}.
The major reason is that, due to the nonlinear mapping
involved in the modulo sampling, (5) is no longer a linear
expression. To deal with this issue, one can employ the
uniform decomposition of a modulo sample [4], i.e., Uλ(Aα)
can be reinteperated as

Uλ(Aα) = Aα− 2λe (6)

where e ∈ CM×1 is a complex vector whose real and
imaginary parts are integers. Leveraging (6) we can formulate
the problem of estimating a mixture of sinusoids as the
following optimization problem:

min
α,e

‖α‖0

s.t. ‖z −Aα− 2λe‖22 < ε, er ∈ ZM , ei ∈ ZM (7)

where ‖ · ‖0 is the `0-norm which counts the number of
nonzero components, ε is a user-defined error tolerance,

{er, ei} are the real and imaginary parts of the complex
vector e, and ZM represents the M -dimensional integer
space. Such an optimization problem can be approximated by
a MILP and solved via the branch-and-bound algorithm [12].
This approach, however, is not suitable when λ is significantly
smaller than the real dynamic range of ym, which leads to a
large folding number [4]. This is because the search space
increases exponentially with the folding number. To reduce
the search space, in the following, we introduce a first-order
difference based solution.

3. PROPOSED SOLUTION VIA MILP

Define the first-order difference of the original sample as
ỹm , ym+1−ym and the first-order difference of the modulo
sample as z̃m , zm+1 − zm. It can be readily verified that

z̃m = ỹm + 2λẽm (8)

where ẽm , em+1 − em is also an integer. When the
sampling rate is sufficiently large, two successive samples of
the original signal undergo slow variations, which implies that
em+1 and em are very close, and the absolute value of ẽm is
relatively small. Furthermore, we consider the case that both
the real and imaginary parts of ẽm belong to the set {0,±1}.
The sampling interval to guarantee this will be discussed later.

We have the following theorem related to the sampling
interval to guarantee ẽm belong to the set {0,±1}.

Theorem 1. Define ω , max{ω1, · · · , ωk}, β̄ ,∑K
k=1 |βkω̄k|, and ω̄k = ωk/ω. If the sampling interval

satisfies

∆T <
1

ω

(
β̄

2λ

)−1

(9)

then we have zm − ym = 2λem, where em is a complex
number whose real part and imaginary part belong to the set
{0,±1}.

The proof of Theorem 1 can be readily derived from
Theorem 2 of [13], and is omitted due to space limitation.

Define z̃ , [z̃1, · · · , z̃M−1]T and ỹ , [ỹ1, · · · , ỹM−1]T .
The relationship between z and z̃, as well as y and ỹ, can be
written as

z̃ = Dz, ỹ = Dy (10)

where D ∈ R(M−1)×M with its (i, j)th element given by
δj−i−1 − δj−i where δi is the Kronecker delta function.
Furthermore, defining ẽ , [ẽ1, · · · , ẽM−1]T and using (8),
we can obtain

z̃ = ỹ + 2λẽ = DAα+ 2λẽ

, Āα+ 2λẽ (11)
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where Ā , DA. Thus we can formulate the estimation
problem of a mixture of sinusoids as

min
α,ẽ

‖α‖0

s.t. ‖z̃ − Āα− 2λẽ‖22 ≤ ε
ẽr, ẽi ∈ {0,±1}(T−1) (12)

For convenience, we write (12) into a real-valued form, i.e.,

min
α̌,ě

‖α̌‖0

s.t. ‖ž − Ǎα̌− 2λě‖22 ≤ ε
ě ∈ {0,±1}2(T−1) (13)

where we define α̌ , [(αr)T (αi)T ]T , ě , [(ẽr)T (ẽi)T ]T ,
ž , [(z̃r)T (z̃i)T ]T , and

Ǎ ,

[
Ā
r −Āi

Ā
i

Ā
r

]

Unfortunately, (13) is a mixed-integer quadratic optimization
problem with `0-norm, which is in general intractable. To
deal with this challenge, we consider the `1-norm convex
relaxation of the `0-norm with respect to α and replace the
quadratic inequality constraint by a linear constraint, resulting
in the following optimization problem

min
α̌,ě

‖α̌‖1

s.t. ε′1 �
(
ž − Ǎα̌− 2λě

)
� ε′1

ě ∈ {0,±1}2(T−1) (14)

where ε′ is a user-defined parameter and � denotes the
element-wise inequality. For the pth component of α̌, i.e.,
α̌p, we define two auxiliary variables ξp = max{α̌p, 0} and
ζp = max{−α̌p, 0} such that

α̌p = ξp − ζp, |α̌p| = ξp + ζp (15)

Therefore we can re-express α̌ and ‖α̌‖1 as

α̌ = ξ − ζ , ‖α̌‖1 = 1T (ξ + ζ) (16)

where ξ ∈ RP+ and ζ ∈ RP+ are vectors with ξp and ζp being
their pth component respectively, and R+ represents the non-
negative real numbers. Such a representation leads to

min
ξ,ζ,ě

1T (ξ + ζ)

s.t. ε′1 �
(
ž − Ǎ (ξ − ζ)− 2λě

)
� ε′1

ě ∈ {0,±1}2(T−1), ξ ∈ RP+, ζ ∈ RP+ (17)

The problem (17) is a MILP that can be solved via the branch-
and-bound algorithm (e.g., the off-the-shelf tool intlinprog in
Matlab). Once we obtain ξ and ζ, we can construct α̌ = ξ−ζ.
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Fig. 1: The “viritual” modulo ADC framework

4. MULTI-CHANNEL UNLIMITED SAMPLING

According to Theorem 1, the upper bound of the required
sampling interval is controlled by three parameters, i.e.,
ω, β̄ and λ. The first two parameters are application-
dependent variables, making it impractical to adjust them to
relax the strict requirement for ∆T . The only parameter
we can change is λ, which denotes the dynamic range of
the M-ADC. However, increasing the dynamic range of the
M-ADC introduces several serious issues, such as reduced
resolution, increased power consumption, and increased
hardware complexity.

Recently, inspired by the Chinese remainder theorem
(CRT) and multi-channel sampling techniques, a multi-
channel modulo sampler was introduced in [14, 15]. Specif-
ically, as illustrated in Fig. 3, the multi-channel sampler
consists of several sampling branches, with each branch
equipped with a M-ADC. It turns out that the multi-channel
M-ADC sampling architecture is equivalent to a single
“virtual” M-ADC (VM-ADC). Let λ̄ denote the measurement
range of the VM-ADC. Apparently, λ̄ can be obtained via

λ̄ = lcm (λ1, λ2, · · · , λN ) (18)

where lcm() denotes the least common multiple. Therefore,
to ensure that the VM-ADC has the largest possible dynamic
range, the integers {λi}Ni=1 should be co-prime.

In addition, the output of the VM-ADC, i.e., z̄, should
be calculated based on {λi, zi}Ni=1. Theoretically, z̄ can be
determined using CRT when the outputs of each sampling
branch are noiseless. However, in real applications, the
measurement noise is inevitable. Directly computing z̄ via
CRT may lead to significant errors, as CRT is sensitive
to noise. Several robust CRTs were proposed to deal
with noise [14, 16, 17]. However, these methods either
require a high signal to noise ratio (SNR) or involve a high
computational complexity. In this work, we propose a simple
but efficient searching approach to calculate the output of the
VM-ADC.

Since the dynamic range of the VM-ADC is λ̄, z̄ should
be within [−λ̄, λ̄]. Therefore, z̄ can be solved by the following
optimization problem
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Fig. 2: The empirical CDF of relative error (left) as well as
the RMSRE of the VM-ADC (right).

z̄ = arg min
z̄∈[−λ̄,λ̄]

N∑
i=1

‖zi − Uλi
(z̄)‖2 (19)

Directly solving the above optimization problem is intractable
due to the nonlinear modulo operation. To address this
challenge, we can employ an alternative search strategy.
Specifically, we define the search step as δ and discretize
the interval [−λ̄, λ̄] into a finite set of gird points. We then
evaluate the cost functions for each element in this finite set
and set z̄ as the element with the smallest cost function. The
details are summarized in Algorithm 1.

Algorithm 1 Obtaining the output of the VM-ADC

Input: {λi, zi}Ni=1, λ̄, and δ.
Initialized: z̄ = zs = 0, L =

∑N
i=1 ‖zi − Uλi

(zs)‖2.
repeat

Compute zs = zs+δ andL′ =
∑N
i=1 ‖zi − Uλi(zs)‖2;

if L′ < L then
z̄ = zs, L = L′;

end if
until zs > λ̄;
Output: z̄ = zs.

5. SIMULATION RESULTS

In this section, simulation results are presented to illustrate
the performance of the proposed solutions. We first evaluate
the performance of Algorithm 1. We consider three sampling
branches, with the dynamic ranges of these associated M-
ADCs set to 3, 5, and 7, respectively. This leads to a VM-
ADC with λ̄ = 105. The noise observed at the ith sampling
branch is disturbed as N(0, σ2

i ). The SNR of each sampling
branch, defined as 10 log

(
(z2
i )/σ2

i

)
, is set equal. The test

input signal (denoted by y) is uniformly distributed with
the interval [−1000, 1000], and hence the noise-free modulo
sample (denoted by z) is given by z = U105(y). The left
figure of Fig. 2 shows the empirical cumulative distribution
function (CDF) of the relative error for 10000 realizations
of y under different SNRs, while the right figure of Fig. 2

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

NMSE of reconstructed α

E
m

p
ir
ic

a
l 
C

D
F

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

NMSE of reconstructed α

E
m

p
ir
ic

a
l 
C

D
F

MILP, M−ADC with λ=3

MILP, M−ADC with λ=4

MILP,VM−ADC with λ=12

HOD, M−ADC with λ=3

HOD, M−ADC with λ=4

HOD, VM−ADC with λ=12

MILP, M−ADC with λ=3

MILP, M−ADC with λ=4

MILP,VM−ADC with λ=12

HOD, M−ADC with λ=3

HOD, M−ADC with λ=4

HOD, VM−ADC with λ=12

Fig. 3: The empirical CDF of the NMSE of the constructedα
when ∆T = 0.16s. Left: SNR = 20dB; Right: SNR = 40dB.

plots the root mean square relative error (RMSRE), defined
as RMSRE ,

√
E((z̄ − z)2/z2), as a function of SNR. From

these figures, we can see that Algorithm 1 recovers the VM-
ADC output with a relatively small construction error when
SNR is greater than 20 dB.

We now present results to illustrate the performance of the
proposed mixed-integer linear programming (MILP) based
solution compared to the higher-order difference (HOD)
based solution. We consider K = 10 sinusoidal components,
where the magnitude of the complex amplitudes are randomly
selected from the interval (0, 10] and the frequencies are
randomly selected from the set {ω|ω = 0.1kπ, k =
1, · · · , 20, k ∈ Z}. The initial phase of each sinusoidal
component is randomly selected from (0, 2π]. The sampling
interval ∆T is set to 0.16s, which may fail to meet the
required conditions for the MILP-based and HOD-based
methods. The SNR of each sampling channel is defined as
SNR = E(‖zi‖2)/E(‖vi‖2). We consider two sampling
branches with λ1 = 2 and λ2 = 3, resulting in a VM-ADC
with λ̄ = 12.

The empirical CDF of the NMSEs of respective methods
are plotted in Fig. 3, where two SNRs are employed. We
observe that the MILP-based method outperforms the HOD-
based method given the same dynamic range of the M-
ADC/VM-ADC. This is because the HOD-based method
generally relies on higher-order differences of the modulo
samples, which tends to amplify the measurement noise and
results in a lower effective SNR. In contrast, the MILP-
based solution benefits significantly from the multi-channel
sampling scheme, which can substantially relax the required
conditions for ∆T , increasing it up to four times larger
compared to the ∆T required for each individual sampling
branch. This result can be derived from Theorem 1.

6. CONCLUSIONS

In this work, we studied the problem of estimating a mixture
of sinusoids in an unlimited sensing framework, which
employs M-ADCs to avoid clipping or saturation that may
occur in conventional ADCs. We examined the properties of
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the first-order difference of modulo samples and proposed a
novel MILP-based solution that has a reduced search space.
In addition, we utilized a multi-channel modulo sampling
architecture to form a VM-ADC, which significantly reduces
the required sampling frequency. Simulation results show
that the proposed MILP-based method not only achieves a
significant performance improvement over the HOD based
methods but also is robust against noise.
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