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ABSTRACT

In this paper, we propose an automatic method to unveil the
nonlinear multi-modulation model that describes vibration
signal of certain complex systems. Firstly, we apply a har-
monic estimation algorithm to the observed signal to identify
all peaks in the spectral domain. Then, using the peaks’
location information, a neural network-based symbolic re-
gression is trained to determine a concise expression of the
multi-modulation model underlying the considered signal. A
regularized objective function is utilized to optimize the neu-
ral network weights and enforce their binarization (sparsity),
providing a simple mathematical expression for the input sig-
nal model. The proposed algorithm improves the robustness
of the determined model by eliminating any distortion in the
input signal, such as transfer function and phase modulation
distortion. This method could potentially be employed in
the vibration analysis of rotating machines, such as planetary
gearboxes, due to the structural spectral contents of the vibra-
tion signal, to reflect the interaction model between system
elements.

Index Terms— Modeling, Symbolic regression, Multi-
modulation, Neural network.

1. INTRODUCTION
The excitation responses of rotating systems are generated
through an unknown nonlinear mixture function, termed a
multi-modulation model [1], typically in a polynomial form.
This model encapsulates the interactions among the system’s
moving parts. The identification of the model is challenged
by the fact that the excitations are distorted with complex
transfer function effects. Identifying this mixture function is
crucial for interpreting system behavior and machine compo-
nents interaction, particularly during phases of degradation
[2][3], and for the implementation of individual signal sep-
aration and tracking algorithms within the identified model
[4][5]. Removing transfer function effects is considered cru-
cial for obtaining the excitation responses, thereby providing
direct information about the health of rotating systems. Blind
system identification (BSI) [6] has been explored in mechani-
cal systems, where several preprocessing techniques aim to

remove transfer function effects. These include the expo-
nential liftering technique and OMA-based methods, which
depend on system operating conditions, system degradation,
and defect types [7]. On the other hand, a significant amount
of research has been conducted to model rotating machine vi-
bration, leveraging the fact that their signals have very struc-
tured spectral contents. This often involves manually inspect-
ing the spectral contents of the vibration signal to establish
a mathematical expression that accurately fits the spectrum
[1]. However, a unified model for rotating machines with
non-conventional architectures, such as planetary gearboxes,
is still a challenging problem under study, e.g., [8]. This re-
search aims to elucidate a simple and concise mathematical
expression that provides a good fit for the observed signal.
We extend the technique proposed in [8] to develop a simpler
and more robust method for modeling harmonic signals orig-
inating from rotating machines, such as planetary gearboxes.
[8] introduces a symbolic regression-based neural network
approach to determine a compact formula that describes the
observation and separation of individual contributions. but it
does not include any processing for handling transfer function
effects on system excitation.

In this paper, we propose to first estimate the spectral peak
locations (i.e. frequencies) of the observed periodic signal via
the high resolution method ESPRIT [9]. This information is
then used as input of a symbolic regression network which
unveils the underlying multi-modulation model of the signal.
Note that our method’s robustness, as will be shown in this
paper, comes from the fact that spectral peak locations are
unaffected by the transfer function or signal phase distortions.
Once the modeling step is performed, the health state of the
different machine’s parts can be tracked and characterized us-
ing source separation algorithms.

2. PROBLEM FORMULATION

Consider a harmonic (vibration) signal y generated through
a non-linear mixture (multi-modulation) F : Rm → R of m
periodic (source) signals. This mixture is distorted by the im-
pulse response of the system’s transfer function, h, during its
transmission to the sensor location. The resulting signal, cor-
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rupted by an additive white Gaussian noise ϵ, is given by:

x(n) = h(n) ⋆ y(n) + ϵ(n) (1)

where ⋆ denotes the convolution operator. y is obtained by ap-
plying the mapping F , assumed to be of polynomial form1, to
a set of m ideally periodic signals s1≤i≤m(n) of fundamental
frequencies fi, i = 1, · · · ,m as follows:

y(n) = F(s1(n), . . . , sm(n))

The fundamental frequencies fi of the m source signals are
assumed to be known (estimated from prior knowledge of the
system). The source’s Fourier series decomposition is then
given by:

si(n) =

Mi∑
k=1

ai,ksin(2πkfi/fsn+ ϕi,k) (2)

where ai = [ai,k, · · · ,aMi,k] and ϕi = [ϕi,k, · · · , ϕMi,k]
represent the unknown amplitudes and phases of the i−th
source signal, respectively, with Mi being the number of its
’significant’ harmonics. fs represents the sampling frequency.
Given the observed signal x(n) and leveraging the essential
information of the sources fundamental frequencies, we seek
to identify the non-linear mixture F that characterizes the re-
lationship between the source signals si(n) and the harmonic
input signal x(n) without a need for an a priori estimation or
knowledge of the unknown transfer function h.

3. SIGNAL MODELING
In vibration signal modeling for rotating machines, practition-
ers typically inspect the signal’s spectral content manually by
examining the locations of harmonics and the available fun-
damental frequencies of sources (related to system mobile
components rotation frequencies, e.g., gears) to identify an
analytical expression that provides a good fit for the spectrum
lines, which can later be used for source separation and health
monitoring [1]. In this work, we improve this process and au-
tomate it, as will be shown in the sequel.

3.1. Vibration data

In the Fourier domain, the spectral content X(f) of the sig-
nal x(n) can be represented as a sum of H complex sinu-
soids Sk(n) = ej2πhkn and their complex conjugates S̄k(n).
hk represents the unknown harmonic frequencies for k =
1, · · · , H . We assume that N samples are available from a
noisy measurement x(n) expressed as:

x(n) =

H∑
k=1

αkSk(n) + ᾱkS̄k(n) + ϵ(n), n = 1, . . . , N (3)

1Indeed, the multi-modulation phenomenon results into a signal which
can be expressed as a linear combination of products of source signals.

where α1≤k≤H are the complex amplitudes of Sk. We seek
to regenerate a new signal x̃(n) from x(n) such that its spec-
tral content X̃(f) has a unit amplitude for all harmonic peaks.
This approach eliminates the effects of the transfer function,
which typically disrupt the amplitude symmetry of the side-
bands of the carrier signal. Thus, we intend for estimating the
harmonics frequencies hk to construct the new signal defined
as:

x̃(n) =

H∑
k=1

Sk(n) + S̄k(n), n = 1, . . . , N (4)

This is achieved by applying a classical frequency estimation
technique to x(n), namely ESPRIT (Estimation of Signal Pa-
rameters via Rotational Invariance) [9]. Following this, we
propose a neural network-based symbolic regression method
to approximate the nonlinear mapping F using the new signal
x̃.

3.2. Regression

Consider multivariate regression with a dataset defined as,
{(Dn, x̃(n))}1≤n≤T/Nb

, where x̃(n) = [x̃((n − 1)Nb +
1), · · · , x̃(nNb)]

T (Nb being a processing window and N
is the total sample size). Dn is a dictionary given by
Dn = [Dn,1, · · · ,Dn,m]T , where Dn,1≤i≤m is formed
by vectors dk,i of indices k = (n − 1)Nb + 1, · · · , nNb,
defined as:

dk,i = [ej2πfik, e−j2πfik · · · ej2πHsupfik, e−2πHsupfik]T

According to (2), si(n) is a linear combination of the rows of
Dn,i, i.e. si(n) = wT

i Dn,i where si(n) = [si((n − 1)Nb +
1), · · · , si(nNb)], wi is the vector of weight coefficients of
source i, and Hsup is an overestimated harmonics number of
M1≤i≤m.

We seek to recover the sources (i.e. vectors wi) and an
approximation ψ for the analytical function F that incor-
porates the selection of the active harmonics in each Dn,i.
This is achieved by minimizing the quadratic error defined as
1
B

∑B
b=1

1
Nb

∑Nb

k=1(|x̃(n) − ψ(wT
1 Dn,1, · · · ,wT

mDn,m)|)2
,where B denotes the number of data windows (batches).
A Binary Neural network-based symbolic regression is pro-
posed to achieve this objective.

Symbolic regression (SR) is a machine learning tech-
nique that identifies an analytical expression which describes
a given dataset. SR is a difficult task that typically involves a
two-step procedure: predicting the ”skeleton” of the expres-
sion up to the choice of numerical constants, then fitting the
constants by optimizing a non-convex loss function. It is of-
ten implemented through genetic programming (GP), which
searches through the space of mathematical expressions while
ensuring that the equation is viable through various heuristics
[10]. However, GP do not scale well to high-dimensional
problems. Neural networks have recently been successfully
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Fig. 1. Architecture of EQL network. The linear output layer
is not shown here. Red lines represents skip connections.

tasked with predicting the correct skeleton, motivated by the
fact that neural networks are good at identifying qualitative
patterns. Authors in [11] propose modifications to feed-
forward networks to include interpretable components, i.e.
replacing usual activation functions with operators such as
multiplication, addition, identity, sine and cosine.

3.3. EQuation Learner (EQL) architecture

The EQL is a fully connected Neural Network (NN) that can
perform symbolic regression by replacing the nonlinear acti-
vation functions with primitive functions [12], [11]. The out-
put of the i − th symbolic layer in Fig.1 can be described
by

g(i) = W(i)h(i−1) + b(i) (5)

h(i) = f(g(i)) (6)

where Wi and b(i) are the weight matrix for the i− th sym-
bolic layer and the bias vector, respectively. f represents
the neural network primitive (activation) functions, and h(0)

is the output of the first layer. The activation function for
the final layer is typically linear, so the output of the neu-
ral network with L hidden layers is ˆ̃x = W(L+1)h(L). In
contrast, the EQL network utilizes a collection of primitive
functions2, with each component of g potentially undergo-
ing a distinct primitive function and allowing for primitive
functions to accept multiple inputs. In our case, the nodes
in the first layer (Fig.1), are grouped into m weight vectors,
w1≤i≤m, which are connected to each dictionary D1≤i≤m.
This results in inputs for the first symbolic layer with a di-
mension equal to the number of sources, defined as h(0)(n) =
[wT

1 Dn,1, · · · ,wT
mDn,m]T . The training of the neural net-

work of L = 2 (a hyperparameter) symbolic layers, and pa-
rameters

θ = {w1, · · · ,wm,W
(1), · · · ,W(L+1),b(1), · · · ,bL+1}

is conducted using established methods akin to those used for
conventional NNs, i.e. Adam [13].

2Since we know that the vibration signal has a polynomial form, we limit
the primitive operators to multiplication (×), addition (+), and the identity
operator (1).

Fig. 2. Illustration of the proposed function to achieve binary
neural network weights.

3.4. Network interpretability
To ensure the interpretability of SR, we need to force the sys-
tem to learn the simplest expression that describes the dataset.
In genetic programming-based approaches, this is typically
done by limiting the number of terms in the expression. For
the EQL network, authors in [11] enforce this through spar-
sity regularization of the network weights, such that as many
of the EQL weights are set to 0. Works [11, 12, 14] leverage
a smoothed L0.5 or a relaxed L0, or simply L1 norm. In this
work, we propose a new way to identify the simplest expres-
sion from the Neural network by constraining its weights, θ,
to binary values from the set {0, 1}. To achieve this, we intro-
duce a regularization term that minimizes a function with two
possible solutions, 0 or 1. The latter, an elementwise function,
is defined as:

L(θ) = sinh2(θ(1− θ)) (7)

where θ represents the weight coefficients of the neural net-
work, and sinh is the hyperbolic sine function defined as
sinh(x) = ex−e−x

2 . Also, we add skip connections, similar
to [11], to the EQL network to introduce an inductive bias
towards simpler equations while simultaneously enabling the
discovery of more complex equations. These skip connec-
tions enable us to bypass intermediate layers and connect
directly to the output. We concatenate the output of the pre-
vious layer with that of the next layer (see Fig.1). ψ is a fully
differentiable neural network with parameters θ, which allows
us to train it in an end-to-end manner with back propagation.
The objective is LASSO-like [15], defined as:

J(θ) =
1

B

B∑
n=1

||ψθ(ŝ1(n), · · · , ŝm(n))− x̃(n)||2

+λ

L+1+m∑
l

|L(θ(l))| (8)

where λ is a penalty coefficient and ŝi(n) = wT
i Dn,i. In

training, we start with non-regularized phase, λ = 0, to give
the NN a good starting point, then the regularization is en-
abled with a nonzero λ value. The regularizer leads to a trade-
off between minimizing the reconstruction loss and enforcing
sparsity by binarizing the Neural network’s weights (Fig.2).
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The final model is selected on the basis of a balance between
the accuracy of the reconstruction and the simplicity of the
extracted expression.

4. RESULTS
We will now examine the case of widely used rotating ma-
chines in industries, such as planetary gearboxes. Vibration
data collected from these machines exhibit highly structured
spectral content. The vibration data of a planetary gearbox
can be modeled as a multi-modulation process involving the
meshing frequency and the rotation frequencies of the gear-
box’s mobile elements. This data is further distorted by trans-
mission path effects, denoted as ”h”, which occur between
the meshing points and the sensor location, as follows:

x(n) = h ⋆

P∑
p=1

s1,p(n)(1 + s2,p(n))(1 + s3,p(n)) (9)

where P represents the planets number of the planetary gear-
box. We aim to identify the multi-modulation model in
(9). For that, we generate the signal in (9) with P = 1,
f1 = 99Hz, f2 = 3Hz, f3 = 8.48Hz, and the signal har-
monics are set to M1 = 2, and M2,3 = 4. The sampling
frequency is fs = 1000Hz, the overestimated harmonics
numberHsup is set to 5, and the signal length is 300 seconds.
The ESPRIT algorithm is applied with an autocorrelation ma-
trix size of 1000. For comparison, we used the method in [8]
where the NN is trained using the Adam optimizer with a
learning rate of lr = 10−3 and a batch size of Nb = 256. The
training process utilizes the raw signal x(n) over a 60-second
duration, incorporating a smoothed sparsity regularization
term L∗

0.5. The objective function is given by J1(θ) =
1
B

∑B
n=1 ||ψθ(ŝ1(n), · · · , ŝm(n)) − x(n)||2 + λL∗

0.5(θ),
where λ is the hyperparameter penalty coefficient. After
selecting the hyperparameter penalty coefficient that achieves
the best trade-off between reconstruction term and parameter
θ sparsity, the signal x(n) is reconstructed, as shown in Fig.
3. The figure shows that the neural network output does not
perfectly fit all peaks, and their magnitudes are not accurately
matched due to the transfer function effects on the raw signal.
One of the expressions identified after thresholding neural
network’s weights is as follows:

x(n) = 6.52036s1 · (0.085 + 5.22559 · s2 · s3)

The determined mathematical expression shows only some of
the terms in model (9), while others related to modulation be-
tween s1 and s2 or s3 are missing. The transfer function ef-
fects during the search for the data model leads in this case to
an erroneous modelization. To avoid such issues, we now op-
timize the EQL network by minimizing the objective function
in (8) with the new signal x̃. Then, we apply a hard thresh-
old of 0.001 to the neural network weights to obtain a binary
neural network. For a Signal-to-Noise Ratio (SNR) of 20 dB,
the accuracy of the estimated frequencies using the ESPRIT

Fig. 3. Reconstruction of the raw signal x with a SNR of 10
dB.

method given by the normalized mean squares error are of the
order of 10−7. The resulting expression is:

ˆ̃x(n) = 0.99s1(n) · (0.99 + 0.99s2(n)(0.99 + 0.99s3(n))

The harmonic sources si for 1 ≤ i ≤ 3 are well selected,
and the reconstructed signal is shown in Fig. 4, demonstrat-
ing a good match between the power spectrum peaks. For a

Fig. 4. Reconstruction of the new signal x̃

lower SNR set to 5 dB, with an ESPRIT algorithm estimation
accuracy of order 10−4, the data model is determined as:

ˆ̃x(n) = 0.93s1(n) · (1.01 + 0.95s2(n)(1.01 + 0.94s3(n)).

The accuracy of the raw signal’s harmonic frequencies does
not affect the model selection, as the parameters θ still con-
verge to the set {0, 1}. One of the original outcomes of our
method is that, in addition to identifying the data model, we
were able to estimate the number of harmonics of the elemen-
tary sources using the fit weights from the first layers. These
outcomes could be vital for the initialization of source sepa-
ration algorithms, and even tracking the amplification of the
harmonic numbers for each source could provide a health in-
dicator for the corresponding components.

5. CONCLUSION
In this paper, we introduce a framework for modeling vibra-
tion signals of rotating machines. Our approach improves
upon previous work by eliminating distortions that affect the
original input signal, such as transfer functions. We leverage a
fully differentiable NN with symbolic layers, which is trained
with a regularizer to enable the binarization of its weights for
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a compact model that describes the given data set. Through
a synthesized planetary gearbox vibration signal, we demon-
strate that our approach leads to a concise functional form
that provides insights into the relationship between the entry
sources.
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