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Abstract—This study focuses on the challenge of monitoring
and managing complex systems by distinguishing sequential
states while observing multiple variables. We introduce a method-
ology for change point detection in multivariate data with non-
Gaussian distribution based on fusion techniques, underpinned
by multivariate statistical test based on the Cramer-von-Mises
approach. To evaluate the performance of our method, we
conducted a comparative analysis with established baseline tech-
niques, namely e-Divisive and Kernel Change Point Analysis
methods, using a multivariate sub-Gaussian distribution. Finally,
we demonstrate the practical applicability of our approach
by showing its ability to reduce invasiveness in detecting in-
tracranial hypertension events during neurointensive monitoring
of traumatic brain injury patient by identifying the temporal
distribution structure in multivariate data.

Index Terms—multivariate data change point detection, two-
sample test, non-Gaussian distributions, multisensor fusion, in-
tracranial hypertension detection

I. INTRODUCTION

From finance and healthcare to industrial purposes and beyond,
efficient time series modeling underpins a wide range of
applications. While measurement data exploration strategies
originated in the artificial intelligence/machine learning have
achieved success, their requirement to access relatively big-
size training data and reliance on global context limits scalabil-
ity for lengthy sequences due to an increase in computational
cost with sequence length. Recent research on statistical tech-
niques suggests that they can achieve comparable performance
with lower complexity [1]. However, the heterogeneity and
non-stationary characteristics of time series data continue to
challenge the ability of single models to capture complex
temporal dynamics, especially in the long-term monitoring
of complex systems and processes, relevant, for example,
for the conception of autonomous systems. The challenge

is even greater regarding the need for joint inference of
multisensor data streams, required to understand and manage
this complexity, which can exhibit non-Gaussian patterns.

Detecting change points that indicate transitions between
different statistical regimes is a fundamental requirement in
various scientific and engineering fields, such as seismic,
climatic, bioinformatics, quality control, monitoring complex
systems, and financial data analysis, see e.g. [2], [3]. Change
point estimation techniques are designed to identify shifts in
univariate or multivariate data. For univariate data, the variety
of segmentation methods is considerably wider, encompassing
both parametric and nonparametric approaches. Notably, there
are specific segmentation methods tailored for non-Gaussian
univariate data, see e.g. [4], [5]. There are significantly fewer
methods that effectively detect changes in multivariate data,
and most of these approaches assume a Gaussian distribution
[6]. Despite the focus on multivariate data analysis, researchers
often concentrate on a single attribute of the multivariate
sample, leading to methods that are typically designed for
specific, well-defined tasks rather than general-purpose appli-
cations, see e.g. [7]. Although more general methods do exist,
their effectiveness can vary depending on the characteristics
of the sample being analyzed. A general segmentation meth-
ods for univariate or multivariate data include e-Divisive [7]
and Kernel Change Point Analysis (KCPA) [8], which rely
on energy statistics and kernel-based measures, respectively.
Other examples of methods for segmenting multivariate data
include MultiRank, which is based on rank statistics [9], and
DeCon, a procedure [10] for detecting emotional concordance,
particularly when identifying changes in mean and covariance.

In this article a general framework for change point identi-
fication in a multivariate data is proposed. The method aims
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to identify the locations of change points by examining the
distributional characteristics of multivariate data with a non-
Gaussian distribution, which is particularly important in practi-
cal applications. We utilize here the methodology based on the
Cramer-von-Mises (CvM) test [11] dedicated to the analysis
of multivariate random samples. Although we propose using
the CvM test, however, any other test for equal distributions
could be applied in this general framework; see, e.g. [12]. Our
approach does not assume any specific distribution of the data
and can be efficient regardless of which parameter(s) of the
multivariate distribution changes over time.

The efficiency of the algorithm proposed in this article is
verified for the general class of multivariate non-Gaussian
distributions, namely α−stable class [13] with special empha-
sis on the sub-Gaussian distribution. The results received are
compared with the general benchmark techniques dedicated to
multivariate data segmentation, namely e-Divisive and KCPA.
Finally, the illustrative example presents a possible application
of presented methodology to the multimodal brain monitoring
performed in the intensive care setting. There are two advan-
tages demonstrated by this use case: a) fundamental - the work
contributes to the so-called hybrid modeling, which combines
data-driven and model-based approaches and b) applications -
it is possible to indirectly monitor changes in a signal that is
typically accessible only through invasive means, by tracking
and segmenting related quantities measured non-invasively.
II. MATHEMATICAL FORMULATION OF THE PROBLEM AND

DESCRIPTION OF THE SEGMENTATION TECHNIQUE

The problem discussed in this article, i.e. partitioning a
multivariate random sample into segments exhibiting identical
probabilistic properties, can be expressed in mathematical
terms. Let X1,X2, ...,XN (N ∈ N) be a d−dimensional
random sample that follows the following model

Xi
d
=


X(1) ∼ F1, for 1 ≤ i < n1,

X(2) ∼ F2, for n1 ≤ i < n2,

...

X(R) ∼ FR, for nR−1 ≤ i < N.

(1)

In this context, n1, n2, ..., nR−1 denote the change points,
while F1, F2, ..., FR correspond to the cumulative distribution
functions (CDFs) of the d−dimensional random vectors asso-
ciated with the respective regimes.

Generally, dividing X1,X2, ...,XN into homogeneous seg-
ments based on change points is called segmentation [14].
By homogeneous segments, we mean that the d−dimensional
random variables within each segment share the same CDF.
The goal of our research is to estimate the change points using
the d−dimensional data, without requiring prior knowledge of
the CDFs F1, F2, ..., FR.

The proposed change point detection algorithm is as
follows. First, a given realization x1,x2, ...,xN of the
d−dimensional random sample X1,X2, ...,XN from the
model (1) is divided into subsamples of length ω. Specifically,
the subsamples consist of consecutive d−dimensional vectors
of length ω derived from x1,x2, ...,xN with a specified
overlap of o. The subsamples are defined as follows


y⃗1 = (x1,x2, ...,xω), v⃗1 = (xω+1,xω+2, ...,x2ω)

y⃗2 = (x1+o, ...,xω+o), v⃗2 = (xω+1+o, ...,x2ω+o)

. . .

y⃗K = (xN−2ω+1, ...,xN−ω), v⃗K = (xN−ω+1, ...,xN ).

Then, for K pairs of subsamples y⃗1 and v⃗1, y⃗2 and
v⃗2, ..., y⃗K and v⃗K we perform the statistical test with the
null hypothesis that two d−dimensional samples have the
same distributions assuming significance level c. Thus, as a
consequence, we receive K p−values of the test. We denote
them as p1, p2, ..., pK . In our study, we propose using the
CvM test tailored to d−dimensional samples proposed in [11].
The details of the test statistic and the corresponding testing
methodology are presented in the next part of this section.

As the next step, we select such values from p1, p2, ..., pK
which are higher than the assumed significance level c. They
will be used to identify potential regime change points. Change
points are detected based on maximizing the probability of
a change in the distribution (statistical test result). However,
in order to avoid such situations where the selected change
points are "close to each other" and actually correspond to
the same regime, in the algorithm we select such p−values
that are at a distance from each other not less than the
neighborhood e. Otherwise, they are assigned to the same
group. For each of these groups, the index with the smallest
p−value is determined and added to the set C. If the number
of change points is known (in the model (1) we assume R−1
change points) then we select the highest maximum R − 1
values from the set C. We assign the change points as the
indexes of the highest selected p−values.

As mentioned, the proposed algorithm is based on the
CvM test adapted to d−dimensional random samples. In the
following part, we recall the general idea of the test. Let
z⃗ = (z1, z1, ..., zN ) and w⃗ = (w1,w2, ...,wN ) be two
d−dimensional random vectors of length N . To verify if
the corresponding distributions are the same at the given
significance level c, the following test statistic is used

T =
1

2N

N∑
i,j=1

2ϕ(||z⃗i−w⃗j ||2)−ϕ(||z⃗i−z⃗j ||2)−ϕ(||w⃗i−w⃗j ||2).

The function ϕ used above is a kernel function that plays
a fundamental role in defining the distance measure used in
the test, influencing both statistical power and consistency. A
kernel function ϕ must satisfy several mathematical properties
to ensure that the test is well-defined and performs optimally.
It should be continuous and negative definite. For more details,
see [11]. In this study, following kernel function is used:
ϕ(z) = 1−(1+z)−1. The selection is based on the simulation
study described in [11]. The statistical test was implemented
using the cramer package in R [15]. In our study, the critical
value of the test (and thus p−value) was computed via the
Monte Carlo bootstrap method with 1000 replications. A
default significance level of 5% was used. In Algorithm 1 we
present the pseudocode of the proposed procedure. We note
that the parameters used in the proposed methodology (see
first line of Algorithm 1) can affect the results. Due to space
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limitations, we do not discuss this issue in this article and
leave it for future studies.

Algorithm 1 CvM test-based segmentation algoritm
Require: ω > 2, o > 0, e > 0, 0 < c < 1
Ensure: data: x1, x2, ..., xN

prepare segments: y⃗1, y⃗2, ..., y⃗K , v⃗1, v⃗2, ..., v⃗K for given ω, o.
for all k ∈ {1, 2, ...,K} do

calculate p-value obtained in CvM test for y⃗k and v⃗k : pk
end for
define P := {k ∈ {1, 2, ...,K} : pk < c}
for all i, j ∈ P : i < j do

if |i− j| < e then ▷ The neighborhood determining
assign indices i and j to the same group

end if
end for
for all groups g ∈ {1, 2, ..., G} do

select index k with the smallest pk value
if for given group there are many indexes with the same

minimum then
calculate median of these indices and assign to C(g)

else
C(g)← k

end if
end for
if R is given then

return R − 1 indices (from {C(1), C(2), ..., C(G)}) with the
smallest p-values.
else

return C(1), C(2), ..., C(G) as change points
end if

III. SIMULATION STUDY

The efficiency of the proposed algorithm is demonstrated for a
general class of d−dimensional distributions, specifically the
d−dimensional α-stable family [13]. As per the Generalized
Central Limit Theory [16], the α-stable distribution is the only
limiting distribution for the sum of random variables with
diverging variance, similar to how the Gaussian distribution is
the limiting distribution for the sum of random variables with
finite variance, as described by the Central Limit Theorem. For
specific parameter values, the α-stable distribution reduces to
the Gaussian case. Hence, the α-stable family is regarded as a
natural generalization of the Gaussian distribution. In addition,
the α-stable distribution can be considered in both univariate
and multivariate scenarios.

For simplicity, we focus on the subclass of d−dimensional
α-stable distributions, namely the sub-Gaussian distribution,
where the dependence between components is controlled by
a single parameter. In contrast, for the general class of α-
stable distributions, such dependence is characterized by the
so-called spectral measure [17] defined on unit sphere in Rd,
which may involve multiple parameters.

Let G = (G1, ..., Gd) be as a zero-mean Gaussian vector
in Rd with the covariance matrix Σ := {ρij}di,j=1, where
ρij = E[GiGj ]. Furthermore, we assume that A is the
one-dimensional totally skewed α−stable random variable
(independent on G) with the following characteristic function

E
(
eitA

)
= exp

{
−γα/2|t|α/2

(
1− isgn(t)tan

(πα
4

))}
,

where γ =
(
cos

(
πα
4

))2/α
and α ∈ (0, 2). When α = 2, then

random variable A is just a constant. The vector defined as

X = (X1, X2, ..., Xd) = (A1/2G1, ..., A
1/2Gd)

is called sub-Gaussian random vector in Rd and has the
following characteristic function

E

[
exp

{
i

d∑
k=1

tkXk

}]
= exp

−

∣∣∣∣∣∣12
d∑

i=1

d∑
j=1

titjρij

∣∣∣∣∣∣
α/2

 .

For each α ∈ (0, 2), the one-dimensional random variables
X1, X2, ...Xd (being the components of sub-Gaussian vector)
have infinite-variance and thus the corresponding distribution
belong to the heavy-tailed class of distributions. In contrast,
when α = 2, then X reduces to a d−dimensional Gaussian.

In our simulation study, we consider the simplified model
(1), namely the model with one change point (i.e. R = 2).
In addition, we assume d = 2 and ρ11 = ρ22 = 1. Taking
the notation ρ = ρ12 = ρ21, we consider the model with two
parameters, namely α and ρ. The α parameter is responsible
here for the heavy-tailed behavior of the random variables
X1 and X2 while ρ controls their dependence. In the further
analysis, we take the notation X ∼ SGα,ρ to refer to a two-
dimensional sub-Gaussian random vector with parameters α
and ρ. Thus the model under consideration can be formulated
as follows

Xi
d
=

{
X(1) ∼ SGα1,ρ1

, for i < n∗,

X(2) ∼ SGα2,ρ2
for i ≥ n∗,

(2)

where i = 1, 2, ..., N . In our analysis presented in this section
in the first scenario we assume ρ1 = ρ2 and the regime
change corresponds to the shift in the α parameter. In the
second scenario, we assume α1 = α2 and the regime change
corresponds to the change in the ρ value.

For both scenarios, N = 1000 was used. The algorithm
was performed with the following parameters: ω = 200, o =
10, c = 0.05, e = 10 and R = 2. First, we consider
the case where the change point is located at the midpoint
of the data (n∗ = 500). In the first scenario, the param-
eters set is as follows: α1 = 1.5, ρ1 = ρ2 = 0.5, and
α2 ∈ {1.51, 1.55, 1.6, 1.7, 1.8, 1.9, 1.95, 1.98}. Fig. 1 presents
the detected change points, where the dashed line represents
the true change point. The boxplots are received based on
500 Monte Carlo simulations of the two-dimensional data
from the model (2). In our analysis we compare the results
with the baseline methods, namely e-Divisive [7] and KCPA
[8], considered in the literature as efficient techniques for the
detection of change points in multivariate data. The medians
of the estimated change points obtained using the proposed
approach are closest to the true value compared to e-Divisive
and KCPA. Furthermore, the precision of the proposed method
improves as the difference between α1 and α2 increases,
which is attributed to a significant reduction in the detected
change points range. For each parameter set (different α2), the
Mean Absolute Error (MAE) was computed. On average, the
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proposed approach achieves 2.06 times smaller MAE than e-
Divisive (exceeding 4 times smaller in extreme cases) and 9.78
times smaller MAE than KCPA (exceeding 15 times smaller
in extreme cases).

Fig. 1. Change points detected by various methods for samples described by Eq. (2)
with the following parameters: α1 = 1.5, ρ1 = ρ2 = 0.5, N = 1000. The number
of Monte Carlo trials for each considered α2 is equal to 500.

For the second scenario, the following parameters were
used: α1 = α2 = 1.5, ρ1 = 0.5, and ρ2 ∈
{−0.9,−0.8, . . . , 0.9} excluding ρ2 = 0.5. As before, a total
of 500 Monte Carlo trials were conducted for each parameter
combination. Fig. 2 presents boxplots of estimated change
points obtained using various methods. Similarly to the first
scenario, the proposed approach outperforms e-Divisive and
KCPA in the estimation of change points, particularly for
negative ρ2 values. The median of the estimated change points
using the proposed method remains close to the true change
point across all values ρ2. Additionally, the variability in
estimated change points is smallest for the proposed method
compared to e-Divisive and KCPA. The MAE was also com-
puted for each parameter set (different ρ2), where the proposed
approach achieved, on average, 3.62 times smaller MAE than
e-Divisive (exceeding 11 times smaller in extreme cases) and
4.58 times smaller MAE than KCPA (exceeding 15 times
smaller in extreme cases).

Fig. 2. Change points detected by various methods for samples described by Eq. (2)
with the following parameters: α1 = α2 = 1.5, ρ1 = 0.5, N = 1000. The number
of Monte Carlo trials for each considered ρ2 is equal to 500.

The subsequent stage of the analysis aimed to evaluate the
impact of the change point’s position within the sample on
segmentation accuracy. For a selected set of parameters (α1 =
α2 = 1.5, ρ1 = 0.5, ρ2 = 1.9), a total of 500 trajectories of
length 1000 were simulated, with the change point n∗ varying
within {⌊0.1N⌋,⌊0.2N⌋, . . . ,⌊0.9N⌋}. The accuracy of the
estimated change points detected by various methods was
assessed using MAE along with the corresponding standard
error (SE). The results presented in Fig. 3 show that the
performance of all methods are worse as the change point
approaches the sample edges (i.e., n∗/N ∈ {0.1, 0.9}). How-
ever, for all analyzed values of n∗/N , the proposed approach

consistently demonstrated the highest accuracy, producing
the lowest MAE. Additionally, the time complexity of the
proposed segmentation method was evaluated via simulation
for sample lengths N = {1000, . . . , 7000} and dimensions
d = {2, 3, 5, 10}, using data generated from model (2) with
parameters ρ1 = 0.5, ρ2 = 1.9, and α1 = α2 = 1.5. A
fixed window length of 200 was used, with the change point
positioned in the middle of the data. Results indicate linear
time complexity.

Fig. 3. Results of the comparative analyses for samples described by Eq. (2): MAE ±
SE obtained for α1 = α2 = 1.5, ρ1 = 0.5, ρ2 = −0.9, N = 1000. For each value
of n∗, 500 Monte Carlo trials were conducted.

IV. REAL DATA ANALYSIS

In this section the potential of the proposed algorithm is shown
by applying it to real data related to the detection of the
episode of elevated intracranial pressure (ICP) in a patient
requiring neurointensive care. ICP monitoring is an invasive
procedure, often associated with serious complications such
as infections. However, its monitoring enables detection of in-
tracranial hypertension (IH), a highly dangerous condition that
can lead to decreased cerebral perfusion pressure or secondary
brain injury, and greatly affects the patient’s outcome [18]. In
clinical practice, it is not always advised to monitor ICP [19],
therefore, a method to detect or predict changes in ICP based
on less-invasive methods is sought-after [20].

The data presented were collected from a patient after
traumatic brain injury admitted to the neurointensive care unit
at Addenbrooke’s Hospital (Cambridge, UK). Arterial blood
pressure (ABP) in the radial artery, non-invasive transcranial
Doppler cerebral blood flow velocity (FVX) in middle cerebral
artery, and ICP were recorded simultaneously as described
in [21] with a sampling rate of 30 Hz. The recording was
cut to capture the most significant change in ICP. Data were
processed anonymously to ensure the protection of sensitive
information. The study protocol was approved by the Neuro-
critical Care User Committee of Addenbrooke’s Hospital with
additional approval to use retrospective data stored in the Brain
Physics Lab research database (REC 23/YH/0085).

Like most biomedical signals, the presented data do not
exhibit Gaussian distribution (see the artifactory spike around
200th sample). As a pre-processing step, ABP and FVX are
averaged over one second. The proposed algorithm is used to
detect change points in ICP using averaged ABP and FVX
signals treated as two-dimensional input.

The segmentation outcomes are illustrated in Fig. 4. The
algorithm was performed with the following parameters: ω =
100, o = 10, c = 0.05, e = 10 and R = None, indicating
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that there is no limitation on the total number of change points
that should be provided as output of the algorithm.

Fig. 4. Averaged ICP, ABP, and FVX signals. Red lines indicate change points detected
by proposed approach using ABP and FVX as inputs. Light red shaded areas represent
the sliding windows used for detection, with the corresponding change points located at
their centers. Green lines illustrate the alignment between change points detected from
ABP and FVX and the ICP signal.

The first change point is identified directly before the
prominent rise in ICP, which demonstrates that the proposed
approach can be used for ICP elevation detection. The third
change point is a notable result, as the proposed algorithm
is able to accurately spot the moment in time just before the
decrease of ICP towards the initial value range. Finally, the
middle change point is associated with approximately stable
values of ICP (around 50 mmHg), and captures the under-
lying changes in the ABP and FVX distribution (Spearman
correlation coefficient), which cannot be inspected visually. It
should be highlighted that the proposed algorithm is capable of
accurate segmentation despite the occurrence of FVX artifact
(spike around 200th observation), which adds to the strengths
of the proposed approach.

V. CONCLUSIONS

The paper provides fundamental and applied contributions.
Firts, we introduce a methodology dedicated to the segmenta-
tion of random multivariate data exhibiting non-Gaussian pat-
terns. The proposed mechanism involves the use of the CvM
test to identify the location of change points by examining
the temporal and multivariate distribution characteristics of
measurement data. Comparative computer simulation studies
reveal that the designed procedure outperforms benchmark
techniques while preserving robustness to a parasitic measure-
ment artifacts at the same time, which typically require an
additional step in the data processing pipeline (increasing its
complexity). Secondly, we proved that proposed methodology
allows for robust detection of the changes in cerebral pressure-
volume state without reliance on the ICP measurement, relying
on readily available and less-invasive measurement methods,
which might be beneficial in clinical scenarios where ICP
monitoring is not indicated.
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