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Abstract—Internet traffic modeling and analysis is critical for
network design and for cybersecurity. Internet time series are
well characterized by scalefree temporal dynamics. However,
scalefree analysis remained so far univariate, applied indepen-
dently to directional counts of either bytes or packets while chal-
lenges in cybersecurity naturally call for multivariate analysis.
Elaborating on recent theoretical developments on eigenvalue-
based multivariate selfsimilarity analysis, this work provides evi-
dence, for the first time, of multivariate selfsimilarity in 17 years
of Internet traffic data from the MAWI repository. It discusses the
potential use of multivariate selfsimilarity for regular background
traffic characterization and anomaly detection.
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I. INTRODUCTION

Context. Ever since the seminal works [1]-[3], it has been
abundantly documented that Internet traffic time series are
well characterized by scalefree temporal dynamics, and can
be accurately modeled by selfsimilarity and long-memory [4]—
[6]. However, scalefree analysis of Internet traffic has so far re-
mained univariate (one time series at a time), whereas network
monitoring and cybersecurity challenges call for multivariate
analysis. This work thus puts forth the first multivariate
selfsimilarity analysis of Internet traffic time series.

Related work. Internet traffic is classically analyzed via the
study of time series consisting of aggregated counts of either
IP (Internet Protocol) packets or bytes. After the fundamental
works [1]-[3], it has been shown that their temporal dynamics
display robust scalefree dynamics over two broad ranges of
fine and coarse scales, well separated by the Round-Trip-Time
[6], [7]. Wavelet (or multiscale) analysis were shown to permit
the robust estimation of the scaling exponents and, thus, the
characterization of Internet traffic [5], [8].

A classical issue involved in analyzing Internet temporal
dynamics is that most traces, if not all, consist of mixtures of
background (or normal) traffic possibly mixed up with massive
anomalous traffic, be it malicious or simply associated with
specific random events. To disentangle the statistics of the
background traffic from those of anomalous traffic, original
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strategies were devised, following approaches from video flow
analysis [9], [10]. Based on random projections, an original
trace is hashed into several surrogates traces, and further used
to compute robust statistics [7], [11]. Combined with random
projections, wavelet tools have permitted the robust assessment
of scalefree dynamics that could hence be correctly associated
with either queuing mechanisms at coarse scales [3], [6] or
with technological protocols at fine scales [6]. These com-
bined tools also provided anomalous traffic detection based
on deviations from background traffic scalefree properties [7],
[11], [12]. This further led to the investigation of the existence
of multifractal properties at fine scales [4], [6], [13], [14].
However, due to lack of existing theoretical and practical tools,
selfsimilarity analysis in Internet traffic has so far been applied
independently either to packet or byte count time series, to in-
coming or outgoing traffic. This led to the question of whether
scalefree dynamics were to be associated with packet or byte
counts, or were identical for incoming or outgoing traffics [7],
[11]. These issues triggered ongoing debates not well framed
in univariate analysis. Recently, multivariate selfsimilarity was
defined and theoretically studied in [15]-[17]. Furthermore,
wavelet-based tools based on the eigenvalues of the (wavelet)
spectrum were devised to permit the theoretically robust and
practically efficient assessment of multivariate selfsimilarity,
and the estimation of the corresponding scaling exponents
[18], [19]. This work constitutes the first attempt at applying
these tools to multivariate Internet traffic.

Goals, contributions and outline. The goal of this work is to
report the first 4-variate analysis of selfsimilarity in Internet
traces. The contributions are i) to study the extent to which
robust random projection-based scalefree analysis extends to
the proposed eigen-wavelet multivariate selfsimilarity analysis;
and ii) to investigate the potential benefits of the proposed
eigen-wavelet multivariate selfsimilarity analysis, as compared
to classical bivariate analysis, for Internet traffic modeling and
anomalous traffic detection. To that end, the eigen-wavelet-
based multivariate selfsimilarity analysis is compared to the
classical bivariate analysis (Section II). These tools are then
applied to Internet traffic traces obtained from the MAWI
repository spanning the years 2007-2023, described in Sec-
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tion III. The relevance of random projections to perform a
robust-to-anomalies analysis of multivariate selfsimilarity in
Internet traffic is detailed in Section IV. The robust assessment
of multivariate selfsimilarity in 4-variate Internet traces is
reported in Section V, where its potential for Internet time
series modeling and anomaly detection is discussed.

II. MULTIVARIATE SELFSIMILARITY ANALYSIS

Multivariate Wavelet Spectrum. Let ¢» denote the so-called
mother wavelet, characterized by its number of vanishing mo-

ments Ny, itself a positive integer such that Vn = 0, ..., Ny—
1, [ptF(t)dt =0 and [, tNeap(t)dt # 0 [20].
For a M-variate signal X (t) = (X1(¢),...,Xan(¢)), the

discrete wavelet transform vector coefficients are defined as
Dx(j, k) = dx,(4,k),...,dx,,(j,k)), where the univariate
wavelet coefficients are computed independently for each
component as dx.,, (j,k) = 279/2 (1), 1| Xon), with {10, 1(t) =
279/2p(279t — k) }(j x)ez2 the collection of dilated and trans-
lated templates of the mother wavelet.

The multivariate wavelet spectrum is defined as the set of

covariance matrices S(27) of Dx(27,k), computed at each
scale 27, as (27) £ LS9  Dx(29,k)Dx (27, k)*, where *
denotes matrix transpjosition, and n; the number of wavelet
coefficients available at scale 27.
Univariate and Bivariate Selfsimilarity Analysis. Univariate
selfsimilarity analysis amounts to assuming that the diagonal
entries of S display power-law behavior across scales 27, each
controlled by a scaling exponent associated with univariate
selfsimilarity parameters. This leads to linear relations in terms
of log-log representations:

~log, 02, 4+ j(2HY +1). (1)

The off-diagonal entries S, ' (27) (m’ # m) of the wavelet
spectrum account for the pairwise cross-temporal dynamical
dependencies amongst components, and thus provide classical
bivariate analysis. Bivariate selfsimilarity thus translates into
off-diagonal S,, ,,/(27) displaying power-law behavior across
scales 27, controlled by scaling exponents H,,

log, Sm7m(2j)

log, ‘Sm,M’(QjN ~ log, |Um7m" ""j(QHm,m’ +1). (2)

These H,, ,,,» bring new insights on cross-temporal dynamics
when H,, ,,v departs from (HY + HY,)/2 [21].

This classical multivariate wavelet analysis leads to the
definition of the wavelet coherence function, which can be read

as a pairwise, scale-dependent, correlation coefficient [21]:
Smm (27)

\/Sm,'rn(2j)sm’,m’ (2])

When Hyy oy = (HY + HY,) /2, Cpy s (27) does not depend
on scale and simplifies into the classical overall correlation
coefficient C, 1/ (27) = Opms /\/ 02,02,/
Eigen-Wavelet-based Multivariate Selfsimilarity Analysis.
The classical analysis described above studies the behavior of
each of the entries of S as a functions of the scales 27, one
after the other. Therefore, it remains in essence pairwise, and
hence, restrictive in the construction of bivariate selfsimilarity

Cm,m’(Qj) = (3)

14:00 14:02 14:.04 14:06 14:.08 14:10 14:12 14:14 14:1¢
Time Jun 15,2022

Figure 1. Internet Traffic. 4-Variate time series for an arbitrary day.

analysis. To better account jointly for multivariate cross-
dependencies and rich cross-temporal dynamics, an alterna-
tive eigen-wavelet-based multivariate selfsimilarity analysis
was recently proposed [18], [19]. It reverses the paradigm
of classical analysis: First, it considers the M components
together by computing the eigenvalues (\;(27),..., Ay (27)),
of S (2j ) independently at each scale ; Second, it assumes
that the eigenvalues \,,(27) of the wavelet spectrum S(27)
asymptotically behave as power laws with respect to the scales
27, with scaling exponent 2H2 — 1. This leads to linear
relations in log-log representations [18], [19], [22]:

1ogy |Am (27)] 2 logy AO, + j(2HM +1). 4)

The set of eigen-functions {log, [\, (27)|}, m =1,..., M,
thus constitutes a new and original tool to investigate jointly, or
in a truly multivariate way, the multiscale statistics of a multi-
variate signal X . It complements multiscale univariate analysis
via the functions {logy Sy, m(27)} and bivariate analysis via
the functions {1logy |Sm.m/(27)|} and Cy, s (27).

III. MAWI DATASET

MAWTI archive, http://mawi.wide.ad.jp, consists of a unique
Internet backbone traffic repository, collecting traces every
day, from 14:00 to 14:15 (Japanese Standard Time), from
2001 till today. Packet header traces are anonymized and
traces made publicly available [23]. Each recording comprises
several hundreds of millions of IP packets, implying an inter-
arrival time of the order of microseconds.

Data used here were collected at the samplepoint-F transit
link of the MAWI network, connecting several Japanese re-
search institutes and universities to the Internet. For the present
case study, traces recorded the 15th (arbitrary choice) of each
month, from 2007 to 2023 were analyzed, consisting of 17x 12
count times series. Each recording is split into four time
series, consisting of Pkt or Byte counts, either entering (in) or
leaving (out) the MAWI network. Each trace is thus 4-variate:
X = (X1,X2,X3,Xy) = (Xlggf’Xththg}ct’X]IB’Zte)
Counts are aggregated on a fine temporal grid: Ts = 0.125
milliseconds, resulting in sample size N = 7200000 for each
of the time series. Fig. 1 illustrates these four time series for
an arbitrary day.

IV. RANDOM PROJECTIONS

Random projection-based robust analysis. A key feature of
Internet traces is that they consist of marked point processes,
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Figure 2. Univariate/Multivariate  selfsimilarity  Analysis.

Functions {logy Sm,m (2’)}m=1,....4 (top plots), and eigen-functions
{log, |)\m(2j)\}m:1w,4 (bottom plots). Blue, black and red lines
correspond to estimates obtained respectively, from the full trace X, from
each of the 2L = 16 sub-traces X;, and as the median across sub-traces
estimates. Date: 2003/06/03.

with the 5-tuple mark consisting of the Internet Protocol, the
Source and destination IP addresses and ports. A random
projection (or sketch) of the trace consists in applying a k-
universal hash function h [24], taking values in an alphabet
of size 2L, to any of the four last attributes, referred to as
A. A sketch procedure thus splits an original IP trace X into
2L surrogate-traces, X, each consisting of all packets with
identical sketch output h(A), thus preserving flow structure
(packets belonging to a same flow are assigned to the same
sub-trace). A key point is that the M = 4 components are
all jointly subjected to the same random projection so that
the multivariate statistical structure of the original trace is
preserved in each of the sub-traces.

The intuition is that when there is no anomaly, all surrogate
traces are statistically equivalent, up to a multiplicative con-
stant. Conversely, whenever present, an anomaly is projected
on a single sub-trace, thus exhibiting outlier statistics. Robust
estimation stems from applying a median across surrogate
traces, hence providing a reference point for normal traffic
with little sensitivity to anomalies.

Selecting different hash keys A leads to different projec-
tions. The present work used both Source IP and Destination
IP addresses as obvious choices. It is observed that equivalent
robust characterizations stem from these two different choices,
or from the use of different hash functions (not shown here).
Robust multiscale characterizations. Figs. 2 and 3 illustrate,
for different days, the robust multiscale analysis achieved
by combining random projections (L = 4) with multivariate
wavelet analysis.

For the sake of pedagogy, let us focus first on Fig. 2. The
blue lines correspond to the functions logy Sy, m(27) (top)
and log, |\, (27)| (bottom) estimated from the full trace X
before random projection. They can vary significantly from
one component to the other or across different days. These
estimates are, indeed, significantly affected by the anomalous
part of traffic and do not represent a robust characterization of
the temporal dynamics of Internet traffic. The 2 black lines
correspond to these same functions estimated from each single
sub-trace X ;. For one same day and one same component,
some sub-trace behaviors may significantly differ from the
majority or of typical behaviors. These sub-traces with differ-
ent behaviors likely correspond to anomalous traffic, whereas

WavCorr
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Figure 3. Bivariate selfsimilarity analysis and wavelet coher-
ence function. Functions {logy Sim,m(27)}m=1,....a (diagonal plots),
{logs S, m/ (29)}in=1,...,4,m’ <m (lower triangle) and wavelet coherence
function {Cy, 17 (29) } =1, .. 4,m’>m (upper triangle). Blue, black and red
lines correspond to estimates obtained respectively, from the full trace X,
from each of the 2 = 16 sub-traces X, as the median across sub-traces
estimates. Date: 2007/02/15.

those collapsing on a same typical behavior can be associated
with background normal traffic. The red lines result from
computing a median, hence a robust statistic, independently at
each scale, across these 2% (black) sub-traces. It can be seen
that the blue and the red lines differ, often significantly. These
median (red) functions thus provide a robust characterization
of the evolution across scales of the statistics of the full trace
X, as opposed to the blue ones, which are significantly biased
by anomalous traffic. The same observations and conclusions
can be drawn from the analysis of Fig. 3, which reports
either the functions {logy |[Sy.m/(27)|} (lower triangle) or
Crm.m(27) (upper triangle).

These investigations lead to the first major contribution
of this work: Extending results already obtained for uni-
variate selfsimilarity analysis, the combination of random
projections with multivariate wavelet analysis permits us to
obtain a characterization of multivariate selfsimilarity of the
background normal traffic, that is robust to the anomalous
traffic. This holds both for the bivariate selfsimilarity analysis
(functions {log, [Sm.m/(27)|} and Cy, . (27)) and for the
truly multivariate analysis selfsimilarity analysis (functions
logy | A (27)]). This could not be taken for granted as com-
puting eigenvalues consists of a highly nonlinear operation.

V. 4-VARIATE SELFSIMILARITY IN INTERNET TRAFFIC

The present section focuses on the analysis, interpretation
and use of these robust characterizations. All results reported
below and discussed are illustrated by means of graphics
associated with different days, chosen for illustration and
pedagogical purposes. Plots for each of the days analyzed
in the present case study are available upon request. Their
analysis yields essentially identical conclusions.

Univariate selfsimilarity analysis. Fig. 2 (top plots) and
Fig. 3 (diagonal plots) report, for two different days, univariate
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Figure 4. Multivariate vs. selfsimilarity analysis. Day: 2007/06/15. Top:
logy Sm,m (27 )m=1,...,4 (blue) and {logy |Amn(27)|}m=1,...,a (red). Bot-
tom: logy Sm,m (27)m=1,...,4 and {logy [Am(2?)|}m=1,...,4 with forced
value O at octave j = 10 to ease comparisons of scaling behavior.

functions log, S,,.m(27) and confirm earlier findings [6],
[71, [13]: Internet time series present remarkable scalefree
dynamics in two distincts ranges of scales, separated by a
characteristic time-scale of roughly T * 2'2 ~ 0.5s, highly
reminiscent of the typical Round-Trip-Time (RTT) in Internet
Protocol (IP) [6], [13]. The coarse scale (CS) range spans 7
octaves (2 decades), from 2137 ~ 1s< 27T, < 297, ~ 2min
and can be associated with selfsimilarity related to queuing
mechanisms for Internet content files, with heavy tail file sizes
[1], [6]. The fine scale (FS) range also spans 7 octaves, from
23T, ~ 1ms < 2T, < 2197, ~ 0.25s and can be related IP
technological mechanisms [6], [13].

The next paragraphs investigate whether scalefree dynamics

are also present in the multivariate and cross-temporal dynam-
ics of Internet time series.
Bivariate selfsimilarity analysis. Prior to conducting any
multivariate analysis, it is mandatory to asses the existence
of cross-temporal dynamics in multivariate Internet time se-
ries. To that end, the wavelet coherence functions (Eq. 3)
between pairs of components are reported in Fig. 3 (upper
triangle plots). They show that, for each direction, byte and
packet count time series, (X1,Xs) = (XPu, X5%,) and
(X3,Xy) = (Xg,ﬁ:t,XéZte), display significant correlation
levels, quasi-constant across the 20 available octaves. This
shows that Packet and Byte time series share closely related
temporal dynamics, across ~ 6 decades of time scales (from
milliseconds to several minutes). Interestingly, Packet time
series (X1, X3) = (X9, XIn.) from each direction also
show significant correlation, but only across the coarse-scale
range, i.e., for time scales above the RTT. This is likely due to
the HTTP protocol that establishes bidirectional connections to
regulate the flow of IP packets within connections depending
on Acknowledgement of Receipt protocols. Packet time series
are not correlated at fine scales, likely as packet injection
protocols only depend on the technology at each end of the
backbone and are thus not related. These significant correla-
tions across scales between the components of Internet traces
constitute the second contribution of this work, and motivate
multivariate selfsimilarity analysis.

Fig. 3 (lower triangle plots) complements the analysis
of cross-temporal dynamics. For the highly correlated pairs
(ngf,Xg;fe) or (XI{-’TILct’XéZte)’ the functions 10g2 Sm,m’
perfectly reproduce biscaling in the two ranges of coarse and

Out In : :
fine scales. For (X}, Xp},), cross-scalefree dynamics is

observed at coarse scales only, in agreement with the fact that
the pair is correlated at coarse scales only. This indicates a
coupling of the In and Out directional time series via coarse-
scale temporal dynamics of the packet count time series.
Eigenvalue-based multivariate selfsimilarity analysis. The
eigen-wavelet-based multivariate analysis of the 4-variate In-
ternet time series yields the function log, A,,(27) reported
in Fig. 2 (bottom plots). Interestingly, these plots show that
all four functions logy A, (27), m = 1,... M = 4, display
biscaling behavior, with scaling both at coarse scales and at
fine scales, separated by the sole characteristic time scale
of ~ 0.5. It is important to underline that biscaling on
each component, i.e., for each function logy Sy, 1 (27), does
not at all automatically imply the same biscaling on all 4
functions eigen-function logy A,,,(27). The fact that biscaling
is observed on all 4 functions eigen-function logy A, (27),
even for m = 1 or m = 2, that is for the smallest eigenvalues,
clearly indicates that biscaling is a truly multivariate statistical
property of Internet time series, not only a univariate one.
Fig. 4 superimposes the logy Sy, m, (blue) and the {logy | A, |}
(red). Bottom plots force all functions to take value 0 at octave
7 = 10. These plots show that, while scaling exponents (slopes
of linear fits) estimated at fine scales from log, S, (blue)
would be mostly identical, they would differ when estimated
from {log, |A;|} (red). For other days, the same observation
can be reported for scaling at coarse scales.

The analysis clearly indicates that biscaling is deep-rooted
in the joint or multivariate temporal dynamics of Internet
traffic. It also shows that the eigen-wavelet-based multivariate
selfsimilarity analysis extracts richer information that is em-
bedded in their multivariate statistical structure, and thus better
characterizes cross-temporal dynamics in Internet time series.
This constitutes our third and most important contribution.
Anomaly detection. Repeating random projections, with dif-
ferent hash functions, can also be used for anomaly detection
[7], [11]: For a chosen function, e.g., log, Sy 1(27), the 5
(out of 2¥ = 16) random projections log, St ,(27) that
depart most (in L'-norm) from the median are kept. This is
repeated independently for 8 different hash-functions. Given
that there exist at most 232 IP addresses (in IPV4 protocol),
the probability that a single address remains in the top-5
deviating projections after the use of 8 hash tables is extremely
close to 0. Therefore, the fact that an IP address survives by
chance in the intersection of the 8 random projections is a
highly unlikely event, thus probably resulting from anomalous
temporal dynamics in Internet traffic. This can be applied to
any of the four either univariate logy Sy, (27) or multivariate
{logy |Am(27)}] functions.

Most anomaly detection procedures involve an energy cri-
terion: Anomalies must be large enough to induce a signif-
icant deviation in some statistics [25]. The univariate func-
tions logy Sp,m fall in that category and can only detect
large enough anomalies for either of the 4 times series
(X, Xgut, X Py X By ). While the largest eigenvalue
log, |\4| also belongs in that category, the three smaller
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Figure 5. Anomaly detection: Jaccard indices of anomalies jointly detected
by different functions (L, = logy Am, Sm = logy Sm,m) for days with

few (left, 2008/06/15) and many (right, 2014/01/15) anomalies.
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eigenvalue functions are likely to detect anomalies with much
smaller energy. As examples: on 2007/01/15, the smallest
eigenvalue function log, |A;| permitted the detection of an
anomaly that involved only 172 IP packets whereas most
anomalies detected by the log, S, ,, involve several thousands
of packets ; on 2007/02/15, log, |A2| permitted the detection
of an anomaly that lasts only 149s whereas most anomalies
detected by logy S,,.m(27) last the entire observation period
(15min). Fig. 5 reports the Jaccard index (ratio of the sizes
of intersection to union of two lists) for the joint detection of
anomalies by two functions log, | A, | or logy Sy m. It shows
that i) anomalies detected on packet times series are also seen
on the byte time series in the same direction ; ii) anomalies
detected by log, |A\4| (largest eigenvalues) corresponds to the
those seen on log, Sy, ; conversely that iii) detections by
log, |A1],log, [A2| (small eigenvalues) correspond to low vol-
ume anomalies, missed by univariate analysis logy Sy, n, ; and,
finally, that iv) the small eigenvalues log, |A\1| and log, |As]
are sensitive to different types of low-volume anomalies.

VI. CONCLUSIONS AND PERSPECTIVES

This work showed that random projections can be ex-
tended to (eigenvalue-based) multivariate selfsimilarity anal-
ysis to produce robust-to-anomaly statistical characterizations
of multivariate temporal dynamics in Internet traffic. It further
showed that scalefree dynamics in two independent ranges
of fine and coarse scales, the biscaling regime, is deeply
embedded in the multivariate statistics of Internet traffic,
instead of being merely a univariate effect.

Because multivariate selfsimilarity analysis digs into the
details of the joint multivariate structure of Internet time series,
it allows for the detection of low-volume anomalies that are
usually missed by univariate detection procedures — a key con-
cern in cybersecurity. Multivariate selfsimilarity analysis tools
will be made publicly available. The systematic longitudinal
analysis across 17 years is under current investigation.
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