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Abstract—False discovery rate (FDR) control serves as a criti-
cal safeguard in high-dimensional statistical analysis, increasing
reliability and ensuring reproducibility of discoveries. Although
extensively studied for real-valued data, FDR methodologies
remain underdeveloped for the complex-valued data domain
despite their importance in signal processing, physics, and
engineering applications. This work confronts a central challenge
in FDR-controlled analysis: settings in which the data contain
groups of highly correlated variables. To achieve this, we advance
our Complex-Valued Terminating-Random Experiments (CT-Rex)
framework by developing the CT-Rex+GVS, a grouped variable
selector. The method comes in two variants: the elastic net
(EN) and the informed elastic net (IEN), both with isotropic
and phase agnostic regularization. We validate the framework
by benchmarking it in the selection of complex-valued grouped
variables for linear regression and in the estimation of the single-
snapshot direction-of-arrival (DOA) based on compressed sensing
using uniform linear arrays (ULA). The conducted numerical
experiments confirm the FDR control property and demonstrate
favorable performance compared to existing approaches.

Index Terms—false discovery rate (FDR) control, CT-Rex,
grouped-variable selection, single-snapshot multi-source detection,
DOA estimation.

I. INTRODUCTION

The control of the false discovery rate (FDR) is widely
used to maximize the number of true positive detections
while constraining the expected proportion of false positives
in selection problems. Ensuring FDR control is crucial for
preserving the reliability and interpretability of statistical
analyses. This is particularly beneficial in high-dimensional
data scenarios, where the risk of spurious detections increases
due to the large number of hypotheses tested. Although
substantial research has focused on developing FDR control
methods for real-valued data (for low- and high-dimensions
[1]–[5]), the extension to complex-valued data, a key require-
ment in many signal processing, engineering, and quantum
physics applications, remains relatively underexplored. This
work extends our previous work on this topic, i.e., the
complex-valued T-Rex (CT-Rex) selector [6], and investigates
the selection of variables with data-driven group structure
in sparse support regimes. Thus, our work contributes to
the existing literature on complex-valued statistics [7]–[12],
which has primarily been focused on probability theory fun-
damentals, estimation methodologies, and challenges related
to non-circularity. Building upon the established Terminating-
Random Experiments (T-Rex) selector framework [4], [5],
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[13]–[15], we propose the extension of the CT-Rex selector
framework by adopting the elastic net (EN) [16], [17] and
the informed elastic net (IEN) [18] variants under isotropic
and phase agnostic regularization with FDR control and
tailoring them for the selection of grouped complex-valued
variables. This culminates in the proposed complex-valued
CT-Rex+GVS selector. Our research aims to develop and
establish robust tools for FDR control in the complex domain,
with potential applications in compressed-sensing-based DOA
estimation [19]–[22], mechanical engineering [23]–[25], and
magnetic resonance imaging [26], thus bridging an important
gap in the signal processing and engineering literature.

Organization: Sec. II briefly recaps the CT-Rex Selector
framework. Sec. III details the modifications for the elastic net
(EN) and informed elastic net (IEN) theory for the complex-
data case. Sec. IV provides numerical simulation results for
a complex regression model with sparse grouped variable
support, and additionally a single-snapshot DOA estimation
scenario with extended and isolated targets. Sec. V concludes.

II. THE COMPLEX T-REX SELECTOR
The recently proposed CT-Rex selector provably controls

a user-defined target FDR while maximizing the number
of selected variables, especially in complex-valued high-
dimensional data settings [6]. It achieves this by modeling and
fusion of multiple early terminated complex-valued random
experiments, in which pseudo-randomly generated dummy
variables compete with the original variables. Its inputs are:

1) The predictor matrix X = [x1 . . .xp], whose p predic-
tors each contain n samples, i.e., X ∈ Cn×p.

2) The response vector y = [y1 . . . yn]
⊤, y ∈ Cn.

3) The user-defined target FDR level α ∈ [0, 1].
A schematic overview of the CT-Rex selector framework is
shown in Fig. 1 and its main steps are briefly summarized:
Step 1 (Generate Dummies): A set of K > 1 dummy matrices
{

◦
Xk = [

◦
xk,1 . . .

◦
xk,L]}Kk=1, each with L dummy variables,

is generated from a circularly symmetric white probability
distribution with finite mean and nonzero finite variance, e.g.,
the complex circularly white standard normal CN (0, σ2I).
Step 2 (Append Complex Dummies): The original predictor
matrix X is augmented K times and a set of enlarged predic-
tor matrices {X̃k = [X

◦
Xk]}Kk=1 is formed. This establishes

an auxiliary tool for FDR-controlled variable selection in
which original and dummy variables compete for selection.
Step 3 (Complex-Valued Forward Variable Selection): A
complex-valued forward variable selector is applied to a set of
tuples {(X̃k,y)}Kk=1 and terminates each of these K random
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Fig. 1: Sketch of the CT-Rex selector.

experiments, for the first time, when T = 1 dummy variable
enters the respective active sets. For a complex-valued linear
model

y = Xβ + ε (1)

with a complex sparse support vector β ∈ Cp, cardinality
∥β∥0 = s < p, and an error term ε ∼ CN (0, σ2I) we
proposed the CT-LARS (Algorithm 1 in [6]) building upon
[13], [24], [27].
Step 4 (Calibrate & Fuse): The outcome of each complex-
valued random experiment is a set of candidate variables
{Ck,L(T )}Kk=1 from which the T dummies are removed, and
the relative occurrence of each variable is computed as:

ΦT,L(j) =

{
1
K

∑K
k=1 1k(j, T, L), T ≥ 1

0, T = 0
. (2)

The indicator function 1k(j, T, L) equals one if the jth
variable was selected in the kth complex-valued random ex-
periment. Then, a conservative estimate of the false discovery
proportion (FDP), is computed and compared against the user-
defined FDR threshold α. If the threshold is not exceeded, the
dummy count is incremented, i.e., T ← T + 1, and the next
iteration of complex forward variable selection is computed
until the FDP exceeds the target FDR α. Following this
procedure, the CT-Rex automatically determines its parameters
T, L, and v, s.t., the FDR is controlled at the user-defined
target level (see Theorem 1 in [4]).
Step 5 (Output): The active set, i.e.,

ÂL = {j : ΦT∗,L(j) > v∗} (3)

with v∗ and T ∗, denoting the optimal values for the voting
level v and the included dummies T , which maximize the
number of selected variables (see Theorem 3 in [4]).

III. THE COMPLEX T-Rex+GVS SELECTOR
This section introduces the modifications to the CT-Rex’s

forward selection and dummy generation to obtain the CT-
Rex+GVS selector. These enable the selection of correlated
grouped variables for high-dimensional complex-valued data.

A. Group Variable Selection with the Elastic Net (EN) and
the Informed Elastic Net (IEN)

In the complex number domain the elastic net is defined as

β̂ = argmin
β∈Cp

∥y −Xβ∥22 + λ1∥β∥1 + λ2∥β∥22 (4)

where λ1, λ2 ∈ R+
0 and ∥β∥1 =

∑p
j=1 |βj | and ∥β∥22 =∑p

j=1 |βj |2 are appropriately defined ℓ1- and ℓ2-norms. The

grouping effect is controlled by λ2, which is typically chosen
via 10-fold cross-validation using Ridge regression based on
X and y. Using the data-augmented LARS-EN solver to solve
the EN as a Lasso problem requires modifying X and y as

X′ =
1√

1 + λ2

(
X√
λ2Ip

)
and y′ =

(
y
0p

)
, (5)

where Ip ∈ Rn×p ensures the isotropic and phase-agnostic
regularization approach used in this work, i.e., ∥β∥2 =
∥βeiϕ∥2∀ϕ ∈ [0, 2π). The new X′ ∈ C(n+p)×p and y′ ∈
C(n+p). Future work will introduce a more efficient solver.
The informed elastic net (IEN) [18] incorporates informa-
tion about how variables are grouped into the penalty term.
It represents the mth group using a binary support vector
1m = [1m,1, . . . , 1m,p]

⊤ ∈ {0, 1}p with corresponding group
sizes pm =

∑p
j=1 1m,j . The grouping itself can be known

a priori, or obtained unsupervised, as outlined in the next
section. The Lagrangian for the IEN is defined as

LIEN(β) = ∥y −Xβ∥22 + λ1∥β∥1 + λ2

p∑

m=1

∥1⊤
mβ∥22
pm

(6)

and its solution as

β̂ = argmin
β∈Cp

LIEN(β) . (7)

The algorithm then refines its inputs as

X′ =
√
λ2




X/
√
λ2

1⊤
1 /
√
p1

. . .
1⊤
M/
√
pM


 and y′ =

(
y
0M

)
. (8)

Thus, the IEN appends only M rather than p entries to the
data. In its augmented form, this makes it computationally
more efficient than the EN, especially for p ≫ M . For non-
grouped variables, i.e., M = p and p1 = . . . = pM = 1,
the IEN and EN are identical. Based on (5) and (8) the opti-
mization problems can be solved as Lasso-type optimization
problems by the CT-LARS as

β̂CT-LARS-EN/IEN = argmin
β∈Cp

∥y′ −X′β∥22 + λ1∥β∥1 . (9)

B. Variable Grouping and Group Dummy Generation

In the context of group variable selection, the dummy
generation process of the CT-Rex selector must be modified, to
generate K dummy matrices

◦
Xk that mimic the group correla-

tion structure of X . When the grouping structure is unknown,
it is discovered using any hard partitioning clustering method.
Our implementation uses hierarchical clustering and supports
single, complete, and average linkage, as well as the Ward
procedure [28]. The distance matrix D = 1− |R|, where the
correlation matrix R = E[XHX]. Groups are formed either
by setting the number of clusters a priori or by thresholding
the dendrogram at ρthr. The resulting dendrogram partitions X
into M disjoint groups of variables {Gi}Mi=1 with M ≤ p. For
a priori known group structures, this step is skipped, but the
dummy generation must still respect the grouping. Building
upon the T-Rex framework (see extended calibration algorithm
[4]), the C-TRex+GVS selector appends L dummies, being
a multiple of p. Thus, a total of L/p sub-dummy matrices
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are created to mimic the group-specific structure and serve as
null statistics. According to the grouping sub-cluster empirical
covariance matrices Σ̂m = 1

(n−1)X
H
mXm are formed and the

dummies for the mth group are generated from CN (0, Σ̂m).

IV. SIMULATION STUDIES

This section presents numerical simulation results that
confirm the FDR-control property and benchmark the CT-
Rex+GVS selector. In Sec. IV-A we analyze a challenging
sparse linear complex-valued regression scenario with grouped
variables. In Sec. IV-B we examine a compressed sensing
single-snapshot direction of arrival (DOA) estimation problem
with groups representing extended targets and isolated sources.

A. Sparse Complex Regression with Group Structures

We consider a high-dimensional (p > n) complex sparse
linear regression model, i.e., Eq. (1). The predictor ma-
trix X is composed of M groups of variables G =
{G1,G2, . . . ,GM} ⊆ {1, . . . , p}, of non-uniform group size pk
and the M th group has a group size of pM = p−∑M−1

k=1 pk.
The experimental parameters are set to M = 4 groups,
p = 500 variables, and n = 300 observations. The groups
m = 1, . . . , 3 represent different types of structured variables,
drawn from Xm ∼ CN (0,Σm) with group covariance profile

Σm =

{
1, ℓ = |i− j| = 0

0.5ℓeiϕ(ℓ), ℓ = |i− j| ≠ 0
, (10)

and group phase profiles ϕ1(ℓ) = 0.2πℓ, ϕ2(ℓ) =
π
3 sin(2π0.1ℓ) and ϕ3 = ϕ0 ∼ U [0, 2π)∀ℓ ̸= 0. The 4th
group X4 ∼ CN (0, I). For X in this simulation example, the
variable indices of the structured groups are set to be G1 =
{25, 26, 27, 28},G2 = {150, 151, 152, 153, 154, 155},G3 =
{450, 451, 452, 453}, while the remaining index set G4 =
{1, . . . , p} \ ⋃3

m=1 Gm forms X4. The support of β is set
as

⋃3
m=1 Gm, i.e., ∥β∥0 = 14. The non-zero support of

β ∼ exp (i · U(0, 2π)) with i =
√
−1, and the noise term ε ∼

CN (0, σ2I). Also, we set the target FDR α = 5%, and eval-
uate the variable selection performance for a linearly valued
signal-to-noise ratio (SNR) grid SNR ∈ {0.1, 0.5, 1, 2, 5, 10}
and average the results over NMC = 200 Monte Carlo
simulations. We compare the performance of the CT-Rex+GVS
selector with the CT-Rex and a Model-X+ Knockoff method
(CKnock) [6]. To use the CKnock method, as in [6], we must
apply a real-value transformation with ℜ(·) and ℑ(·) denoting
real- and imaginary parts, i.e.,

XR =

(
ℜ(X) −ℑ(X)
ℑ(X) ℜ(X)

)
, XR ∈ R2n×2p , (11)

yR = [ℜ(y) ℑ(y)]⊤, yR ∈ R2n , (12)

and consequently βR ∈ R2p. The transformation preserves the
properties of complex-valued multiplication and conjugation.
After determining the set of active indices, the estimated
support set of β is split in half, accounting for real and
imaginary parts, respectively. To maintain FDR control of the
CKnock for complex-valued data, the final estimate of the
support of β is obtained by forming the intersection, i.e.,

support(β̂) = support(ℜ(β̂)) ∩ support(ℑ(β̂)) . (13)

Note that the union does not provide FDR control [6]. For
the CKnock selector, we used Gaussian Knockoffs and an
approximate semi-definite programming solver due to com-
putational constraints, as both second-order Knockoffs and
exact semi-definite programming were infeasible within the
24-hour processing limit. As shown in Fig. 2a, the proposed
CT-Rex+GVS and its two competitors the CT-Rex, and the
CKnock selector, indeed control the target FDR α = 5% for
each of the SNR levels. The CT-Rex+GVS in its EN and IEN
variants perform similar, and all three clearly outperform the
model-X+ based CKnock methods in terms of TPR.
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(a) FDR-control property (Target FDR α = 5%).
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Fig. 2: Complex linear regression with FDR control for
grouped variables and varying SNR levels.

B. Single-Snapshot Compressed Beamforming with FDR Con-
trol for DOA Estimation of Extended and Isolated Targets

The following scenario concerns the joint detection and
estimation of the direction of arrival (DOA) of multiple source
signals. This is fundamentally important in applications such
as radar and sonar systems. The work of [19] presented com-
pressed sensing (CS) algorithms for DOA estimation, showing
that the array output y can be modeled as a sparse linear
combination of steering vectors in a discretized DOA space.
Given a support estimate, the DOA estimates are obtained
by mapping them on the grid. Note that the performance of
compressed beamforming algorithms [19] depends on the grid
resolution. A denser grid increases mutual coherence among
the basis vectors, which leads to poorer recovery performance.
Inspired by [20]–[22], we adopt a Lasso-type sparse regression
approach and compare our method to their proposed algo-
rithms: the adaptive Lasso (ALASSO), the adaptive Elastic
Net (AEN), and the Sequential Adaptive Elastic Net (SAEN).
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The sensor array is a uniform linear array (ULA) of M sensors
aiming at DOA estimation for θ ∈ [−90◦, 90◦) relative to the
array axis. We assume narrowband processing, and make the
far-field assumption (i.e., propagation radius ≫ array size),
resulting in a plane wave signal model. The steering vector
of a ULA with half-wavelength inter-element spacing for a
source at angle θ is given by

a(θ) =
1√
M

[
1 eiπ sin(θ) . . . eiπ(M−1) sin(θ)

]⊤
. (14)

For Q < M sources with distinct DOAs {θq}Qq=1, a single-
snapshot ULA measurement is modeled as

y = A(θ)s̃+ ε , (15)

where A(θ) = [a(θ1) . . . a(θQ)] is the steering matrix for
the true, continuous-valued source directions θq , and s̃ ∈ CQ

is the source signal vector. To leverage CS methods, the
continuous angular domain is discretized into a uniform grid
{θg}Gg=1, leading to the CS model

y = Φβ + ε , (16)

where Φ ∈ CM×G is the dictionary matrix whose columns are
the steering vectors a(θg) for each grid point, and β ∈ CG

being sparse and of cardinality ∥β∥0 = Q with nonzero
entries corresponding to source locations on the grid. This
formulation enables sparse recovery since typically Q ≪ G.
However, model mismatch occurs if true DOAs lie off-grid,
potentially degrading estimation accuracy.
We consider a ULA with M = 64 sensor elements and
an angular grid resolution of 1◦. Furthermore, we assume
Q = 8 heterogeneous sources originating from two ex-
tended targets, represented by signal groups of support indices
G1 and G2, and two isolated targets within group G3, i.e.,
G1 = {θ : θ ∈ {−45◦,−44◦,−43◦}},G2 = {θ : θ ∈
{21◦, 22◦, 23◦}},G3 = {θ : θ ∈ {−60◦, 50◦}} . The source
signals for the two extended targets were designed with group-
specific parameters. For group Gk(k ∈ 1, 2), the amplitudes
αk ∼ N (µαk

, σ2
αk

Ck) and phases ϕk ∼ N (µϕk
, σ2

ϕk
Ck)

mod 2π, where Ck is the within-group correlation matrix

Ck = I+ ρk11
⊤, (17)

and ρk ∈ [0, 1) as intra-group correlation coefficient. The final
signals for group Gk are computed as sk = αk⊙eiϕk where ⊙
denotes element-wise multiplication. The two isolated sources
of G3 were modeled as siso = eiU(0,2π). The comparison
methods - ALASSO, AEN, and SAEN - use the generalized
information criterion, according to [22], to estimate the source
number. In contrast, the CT-Rex+GVS and the CT-Rex selector
do it blind. The CT-Rex+GVS selector used the Ward pro-
cedure to uniformly cluster the steering matrix into angular
sectors. For the simulation, we conducted 200 Monte Carlo
trials per algorithm. In each trial noise was generated as
ε ∼ CN (0, σ2I), and the performance was evaluated across
the SNR grid {0, 5, 10, 15, 20} dB at target FDR α = 5%.
In Figs. 3a-3b we report FDR and TPR performance. The
results show that the FDR is controlled in this scenario by
CT-Rex+GVS and CT-Rex across all SNR levels. Notably,
the TPR performance of both exceeds that of the competing
methods particularly at low to mid-range SNR. At 20 dB, the
competitors clearly exceed the target FDR.

TABLE I: Parametrization for Gk ∈ {1, 2}.
Group µαk

σαk
µϕk

σϕk
ρk

G1 1 0.05 π/4 0.1 0.8
G2 0.8 0.02 π/3 0.05 0.9
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(a) FDR performance.

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
SNR [dB]

T
P

R

Algorithm
AEN
ALASSO
CT-Rex
CT-Rex+GVS+EN
CT-Rex+GVS+IEN
SAEN

(b) TPR performance.

Fig. 3: Compressed sensing based grouped DOA estimation
for varying SNR levels with FDR control.

V. CONCLUSIONS
This work introduced the CT-Rex+GVS selector, extending

the CT-Rex framework to enable grouped variable selection
with FDR control in high-dimensional complex-valued data.
By integrating elastic- and informed elastic net regularization,
the method achieves robust FDR control while improving
selection accuracy. Simulations in grouped sparse regres-
sion and DOA estimation demonstrate the method’s ability
to control the FDR. Additionally, we observe a significant
increase in TPR compared to competing FDR-controlling
methods. These results highlight its potential for variable
selection in complex-domain applications, addressing a critical
gap in signal processing and engineering. Future work will
develop efficient pathwise LARS-EN solvers for large scale
complex-valued problems, investigate data-adaptive grouping
with phase-awareness, and extend to structured non-isotropic
regularization.
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