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Abstract—This paper addresses the estimation of the number
of endmembers in a hyperspectral image composed of p spectral
bands. Each pixel is modelled as a Dirichlet linear mixture of k
endmembers corrupted by an additive Gaussian noise correlated
across the spectral bands and having a Toeplitz covariance
matrix. Assuming than n i.i.d. pixels are observed, we leverage on
the spiked model techniques in random matrix theory to study the
behaviour of the largest eigenvalues of the non-centered sample
covariance matrice in the high-dimensional asymptotic regime
in which p, n converge to infinity at the same rate while k is
kept fixed. The results are further specified in the case where
the noise covariance follows a first-order autoregressive model,
and an estimate of k is developed. Numerical experiments on real
world datasets show promising results compared to alternative
approaches of the literature.

Index Terms—hyperspectral imaging, intrinsic dimension,
high-dimensional regime, random matrix theory

I. INTRODUCTION

Hyperspectral imaging encompasses many different tasks,
among which the estimation of the number of spectrally dis-
tinct signatures, often termed as virtual dimensionality (VD),
which is a preliminary step for more involved tasks including
spectral unmixing and pixel classification/identification.

Although the precise definition of VD has been subject to
some variations in the literature, the classical methods, e.g.
[1]–[3] (see also [4] for a comprehensive review), assume that
the observed signal is a linear mixture of the material spectral
signatures corrupted by some additive noise, and rely on a
signal/noise subspace decomposition to define the VD. Let us
consider an observed pixel y composed of p spectral bands,
which is modelled as

y =

k∑
i=1

aisi + v, (1)

where a1, . . . ,ak ∈ Rp are the spectral signature vectors,
assumed deterministic, s1, . . . , sk ≥ 0 are the fractional
abundances, which can be modelled either as deterministic
or random, and v some random additive noise with zero-
mean and covariance matrix V[v] := E[vv⊤] = Σ. In most
of the aforementioned approaches, it is assumed that the
noise is white across the spectral bands, i.e. Σ = σ2I, and
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that a sample y1, . . . ,yn of (1) is available to estimate the
eigenvalues and eigenvectors of the covariance matrix of y,
from which an estimate of k can be obtained. In particular,
those methods often rely on the sample covariance matrix
(SCM):

R̂n =
1

n

n∑
i=1

yiy
⊤
i , (2)

and/or its centered version

R̃n =
1

n

n∑
i=1

(yi − yn)(yi − yn)
⊤, (3)

with yn = n−1
∑n

i=1 yi, which are consistent estimates in
the asymptotic regime where the dimension p is fixed and the
sample size n → ∞, and under a large class of statistical
models for y.

In practice, the reliability of such estimators requires that
n ≫ p, which is often unrealistic in the context of hyperspec-
tral imaging since p is large (usually of the order of a hundred
bands), and the number of ”sample” pixels n is limited to
preserve the stationarity across y1, . . . ,yn. In that case, it is
more reasonable to assume that p and n are of the same order
of magnitude, in which case R̂n and R̃n are known to be poor
estimates. To retrieve a situation where p ≪ n, dimension
reduction techniques can be used, but they rely on a delicate
choice of certain hyperparameters, which may also be related
to an accurate estimation of the unknown covariance matrices.

An alternative approach to model the situation where p and
n are of the same order of magnitude consists in using the
high-dimensional regime in which p, n → ∞ such that p

n
converges to a positive constant, while k is fixed. In that case,
results from random matrix theory and the so-called spiked
models [5] can be exploited to study the behaviour of the
largest eigenvalues of R̂n and R̃n. This direction was explored
in [6]–[8] in which estimates of k based on thresholding
each eigenvalue of R̂n, or the difference between successive
eigenvalues, were provided under the general scenario where
Σ is not necessarily equal to σ2I. However, both above-cited
approaches rely on estimates of Σ which are not proved to be
consistent in the high-dimensional regime. In practice, the poor
estimation of Σ due to the high-dimensionality of the model
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leads to a severe performance degradation of VD estimation
techniques [9].

In this paper, we pursue the path taken in [7] and provide,
in section II, a study of the largest eigenvalues of R̂n in
the high-dimensional regime and in the not too restrictive
case where Σ is assumed Toeplitz. The study relies on the
technique developed in [10] for spiked models as well as the
results of [11]. In section III, the results are further specified
in the case of an AR(1) covariance matrix, and an estimate
of the VD is developed. Providing an upper bound on the
total number of endmembers is available as in [7], [8], and
relying on a conjecture on the fluctuations of the largest
noise eigenvalue of R̂n, this estimate is also proved to be
consistent in the high-dimensional regime. Finally, in section
IV, numerical experiments are performed on the real datasets (
[12], [13]) for which a ground truth is available, and shown to
be in agreement with the theoretical guarantee of the proposed
method as well as competitive with alternative approaches. The
code for our experiments is available at [14].

II. SPECTRUM OF THE SCM IN THE HIGH-DIMENSIONAL
REGIME

We first detail the statistical model used in this paper. Let
us rewrite (1) as

y = As+ v, (4)

where A = [a1, . . . ,ak] and s = (s1, . . . , sk)
⊤. We assume

in the following that v ∼ NRp(0,Σ) and that s follows a
Dirichlet distribution with parameter α ∈ (0,∞)k for which
we recall that E[s] = ∥α∥−1

1 α and

Γ = V[s] =
1

1 + ∥α∥1

(
dg

(
α

∥α∥1

)
− αα⊤

∥α∥21

)
,

where ∥.∥1 is the ℓ1 norm and dg(u) is the diagonal matrix
having the entries of vector u on its diagonal. The noise
covariance matrix is assumed to be Toeplitz with the following
assumption on the generating covariance sequence.

Assumption 1: We have Σ = (ρi−j)i,j=1,...,p where (ρℓ)ℓ∈Z
satisfies

∑
ℓ∈Z |ℓ|2|ρℓ| < ∞. In addition, the associated

spectral density

s(t) :=
∑
ℓ∈Z

ρℓe
−i2πℓt,

satisfies s− := mint∈[0,1] s(t) > 0.
In particular, Assumption 1 ensures that the spectral density
s associated with (ρℓ)ℓ∈Z is twice continuously differentiable
on [0, 1]. By denoting s+ := maxt∈[0,1] s(t), we further have

0 < s− ≤ λp(Σ) ≤ . . . ≤ λ1(Σ) ≤ s+ < ∞,

where for a p × p symmetric matrix B, λ1(B), . . . , λp(B)
denotes its eigenvalues in decreasing order. We also assume
that i.i.d. copies of y1, . . . ,yn of (4) are available. The next
assumption is related to the high-dimensional regime used in
the study.

Assumption 2: p = p(n) is a function of n such that p
n →

c > 0 as n → ∞, while k, α and s are independent of n.

Moreover, if Ξ = Γ+ ∥α∥−2
1 αα⊤, then for all i = 1, . . . , k,

λi

(
AΞA⊤ +Σ

)
→ γi as n → ∞, with γ1 ≥ . . . ≥ γk > s+.

By leveraging model (4) and Assumptions 1-2, we are
now in position to state the results regarding the asymptotic
behaviour of the eigenvalues of R̂n defined in (2). Since
k is assumed fixed, we are in the context of the so-called
spiked models, and the global asymptotic behaviour of the
eigenvalues only depends on c and the spectral density s.

Let us consider the empirical eigenvalue distribution of Σ
defined as the probability measure νn = p−1

∑p
i=1 δλi(Σ),

where δx is the Dirac measure at point x. From Assumption
1 and Szegö theorem [15], it is well-known that

νn
w−−−−→

n→∞
ν := τ ◦ s−1,

i.e. the sequence (νn) converges weakly to the image measure
of the Lebesgue measure τ on [0, 1] by s. Moreover, the
support of ν is given by supp(ν) = [s−, s+].

Let us now denote by µ̂n the empirical eigenvalue distri-
bution of R̂n. Then one can prove using [16] that almost
surely (a.s.), µ̂n

w−→ µ as n → ∞, where µ is a de-
terministic probability distribution whose Stieltjes transform
z 7→ m(z) =

∫
R(λ − z)−1dµ(λ), defined on C\ supp(µ),

verifies the following equation

m(z) =

∫
R

dν(λ)

λ(1− c− czm(z))− z
. (5)

Moreover, using Assumption 1 and the results of [17, Th. 1.1]
(see also [11]), we have the following decomposition

µ(dλ) = fµ(λ)dλ+

(
1− 1

c

)+

δ0(dλ), (6)

where the density fµ has a compact interval as support and
is given by fµ(λ) = π−1 limy↓0 Im (m (λ+ iy)). It turns out
that the support of fµ can be further characterized using again
the results of [17, Th. 4.1-4.3] which we summarize below.
Define for all w ∈ R\ supp(ν),

ϕ(w) = w (1− c− cwη(w)) . (7)

where w 7→ η(w) =
∫
R(λ − w)−1dν(λ) is the Stieltjes

transform of ν. From Assumption 1, it can be verified that
η(w) → ±∞ as w → s∓, η(w) → ±0 as w → ±∞
and that η is increasing on R\supp(ν). As a consequence,
we have ϕ(w) → ±∞ as w → s± and w → ±∞, and ϕ
admits a unique local maximum at point w− (resp. a unique
local minimum at point w+), with w− ∈ (−∞, s−) and
w+ ∈ (s+,+∞). Finally, denoting x± := ϕ(w±), we have
supp(fµ) = [x−, x+].

Moreover, we have s+ < w+ < x+ ≤ s+(1 +
√
c)2. In

practice, the computation of η can be done via some numerical
integration, but in some special cases such as the AR(1) model
described in the next section, a closed-form expression can be
obtained.

As we have seen, the fixed rank perturbation generated by
As in (4) does not impact the global asymptotic behaviour of
the eigenvalues of R̂n described in (6), which only depends
on c and the noise spectral density s. However, if we focus
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on the individual behaviour of the k largest eigenvalues, more
can be said, as described by the next result.

Theorem 1: Under Assumptions 1 and 2, we have for all
i = 1, . . . , k,

λi

(
R̂n

)
a.s.−−−−→

n→∞

{
ϕ (γi) if γi > w+

x+ if γi ≤ w+

,

while λk+1(R̂n) → x+ and λp(R̂n) → x− a.s. as n → ∞.
Additionally, if γi > w+, we have

λi

(
R̂n

)
= ϕ(γi) +OP(n

− 1
2 ).

Proof: The proof, which follows verbatim the steps
of [10], is omitted. We note however that our model (4)
does not strictly satisfies the hypothesis formulated in [10]
(termed as ”i.i.d”. or ”orthonormalized” models) due to the
strong dependency between the entries of s. To deal with
this special case, we use a standard concentration inequality
[18] for sub-Gaussian random vectors which allows one to
study random matrices of the type S

(
n−1V⊤V − zI

)−1
S⊤,

A⊤ (n−1VV⊤ − zI
)−1

VS⊤ for z ∈ C\R, with S =
[s1, . . . , sn], V = [v1, . . . ,vn]. Those matrices appear in [10,
Lemma 4.1] and are the keystone of the proof.

Thus, providing that the limit eigenvalues γ1, . . . , γk are
above the threshold w+, a phase transition phenomenon occurs
and we observe that the corresponding largest eigenvalues
λ1(R̂n), . . . , λk(R̂n) escape from the bulk of the ”noise”
eigenvalues λk+1(R̂n), . . . , λp(R̂n) which converge into the
interval [x−, x+].

It is also worth noting that the limit eigenvalue γi defined in
Assumption 2 depends on both the signal covariance AΞA⊤

and the noise covariance Σ which do not share the same
eigenbasis in general. Nevertheless, using Weyl’s inequality,
if the condition

lim inf
n→∞

λi

(
AΞA⊤) > w+ − s−, (8)

is verified, then we have γi > w+. Although not optimal,
the sufficient condition (8) involves a decoupling between the
eigenvalues of the signal part AΞA⊤ and the noise covariance
Σ.

Remark 1: In the well-known white noise case, Σ = σ2I,
we have ϕ(w) = w(σ2 −w)−1(σ2(1− c)−w) so that w+ =
σ2(1+

√
c) and x+ = σ2(1+

√
c)2, and the condition γi > w+

rewrites λi

(
AΞA⊤) ⪆ σ2

√
c. Therefore, in that case, the

sufficient condition (8) appears sharp.

III. THE SPECIAL CASE OF AN AR(1) PROFILE

In this section, we specify the previous results in the special
case where the covariance sequence (ρℓ)ℓ∈Z is such that

ρℓ =
σ2θ|ℓ|

1− θ2
,

3 2 1 0 1 2 3 4 5 6
w

2

0

2

4

6

(w
)

x+

x

1
(1 | |)2

1
(1 + | |)2

Fig. 1. Function ϕ for σ2 = 1, θ = 0.3, c = 0.25.

for some σ2 > 0, θ ∈ (−1, 1). Using the associated spectral
density s(t) = σ2|1− θe−i2πt|−2, a straightforward computa-
tion provides

ϕ(w) = w

(
1 + c ϵ(w)

√
1

(1− w
s+
)(1− w

s−
)

)
, (9)

with s± = σ2(1 ∓ |θ|)−2 and where ϵ(w) = −1 if w < s−
and 1 if w > s+. A typical illustration of ϕ is given in
Figure 7, together with the edge points x± of supp(fµ) defined
in the previous section. In particular, we have from (7) that
x+ → +∞ as |θ| → 1 and the same holds for the critical
threshold w+ in Theorem 1. In other words, from (8), for
highly correlated noise (|θ| close to 1), the signal strength
represented by the eigenvalues λi(AΞA⊤), i = 1, . . . , k,
must be also large for the corresponding eigenvalues of R̂n

to escape the bulk of the noise eigenvalues [x−, x+].
Providing an upper bound kmax, independent of n, on the

number k of endmembers is available, it is also interesting to
note that estimates of the noise covariance parameters σ2 and
θ, consistent in the high-dimensional regime, can be obtained.
Indeed, denote by

α̂n =
1

p− kmax

p∑
i=kmax+1

λi

(
R̂n

)
,

β̂n =
1

p− kmax

p∑
i=kmax+1

λi

(
R̂n

)2
.

Then we have by straightforward computations

α̂n =
1

p
trΣ+OP

(
1

n

)
,

β̂n =
1

pn
(trΣ)

2
+

1

p
trΣ2 +OP

(
1

n

)
,

as well as,
1

p
trΣ =

σ2

1− θ2
,
1

p
trΣ2 =

σ4(1 + θ2)

(1− θ2)3
+O

(
1

n

)
.

Putting these estimates together, let

θ̂2n =
|β̂n − (1 + p

n )α̂
2
n|

β̂n + (1− p
n )α̂

2
n

, σ̂2
n = α̂n|1− θ̂2n|. (10)
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Fig. 2. Histogram of ∆ (5000 draws) and Tracy-Widom density

Then we have θ̂2n = θ2+OP
(
n−1

)
and σ̂2

n = σ2+OP
(
n−1

)
.

Let us now denote by ŝ±,n = σ̂2
n(1 ∓ |θ̂n|)−2 the as-

sociated estimates of s±, as well as ϕ̂n the corresponding
estimate of ϕ given in (9) where s± are replaced by ŝ±,n.
Then for any compact interval I ⊂ (s+,+∞), we have
supw∈I

∣∣∣ϕ̂n(w)− ϕ(w)
∣∣∣ → 0 a.s. as n → ∞. This in turn

implies that the unique local minimum of ϕ̂n on (ŝ+,n,+∞),
which we denote by x̂n verifies

x̂n = x+ +OP(n
−1). (11)

The estimate x̂n of the right edge x+ can be used to build
a consistent estimate of the rank k, providing the following
conjecture on the fluctuations of the largest noise eigenvalue
λk+1(R̂n).

Conjecture 1: If p
n = c+O(n−1) and γk > w+, then

λk+1(R̂n) = x+ +OP

(
n− 2

3

)
.

We note that Conjecture 1 has been proved for s modelled as
a complex or real Gaussian vector [19, Th. 4] [20]. Owing
to the universality principle in random matrix theory, we
expect Conjecture 1 to hold for a broader class of distribu-
tions, including the Dirichlet distribution used in this work,
although the proof would be beyond the scope of this paper.
We also add that Conjecture 1 should be formally stated
as λk+1(R̂n) = x+,n + OP(n

− 2
3 ) where x+,n is defined

as the largest local minimum of the function ϕn, the non-
asymptotic version of ϕ in (7) with w 7→ η(w) replaced by
w 7→ p−1tr(AΞAT +Σ − wI)−1. But from Assumptions 1
and 2, it can be proved that x+,n = x++O(n−1). Finally, we
compare in Figure 2 the empirical distribution function of

∆ = n2/3

(
2

w4
+ϕ

′′(w+)

) 1
3 (

λk+1(R̂n)− x+
)
,

together with the density of the GOE Tracy-Widom [20], for
p = 200, n = 400, θ = 0.5, σ = 1, α = (1, . . . , 1)⊤ A =√
10[e1, . . . , ek] with e1, . . . , ek the first k elements of the

standard basis of Rp. The observed result tends to validate
Conjecture 1 empirically.

Using Conjecture 1 together with (11) yields

λk+1(R̂n) = x̂n +OP

(
n− 2

3

)
,

while from Theorem 1, we have limλk(R̂n) > x+ a.s.
Therefore, we deduce the following result.

Proposition 1: Let (κn)n≥1 a deterministic sequence such
that C1n

−δ ≤ κn ≤ C2n
−δ for some constants C1, C2 > 0

and 0 < δ < 2
3 , and define

k̂n := max{i : λi(R̂n) > x̂n + κn}.

Then under Assumptions 1, 2 and Conjecture 1, and if γk >

w+, we have P
(
k̂n = k

)
→ 1 as n → ∞.

Remark 2: This method can be generalized to other models
such as MA(1).

IV. SIMULATIONS

We first illustrate the convergence of the empirical eigen-
value distribution µ̂n to µ described in Section II on a real
dataset [14]. We use the Urban hyperspectral scene [12], which
is an aerial image of size 307 × 307 pixels composed of
210 wavelengths uniformly spaced between 400–2500 nm.
After excluding channels 1-4, 76, 87, 101-111, 136-153, and
198-210 due to dense water vapor and atmospheric effects,
a total of p = 162 wavelengths remain. This preprocessing
step is commonly used in hyperspectral unmixing analyses.
More precisely, we use the red-marked homogeneous region
represented in Figure 3 composed of 1024 pixels and which
we split into four parts of equal sizes, giving four samples of
size n = 256 so that p

n ≈ 0.63 .

Fig. 3. Representation of the 70th band of the Urban hyperspectral image.
An homogeneous area has been outlined in red.

In Figure 4, we plot the histogram of the eigenvalues
λkmax+1, . . . , λp over the four samples. We also plot the
density fµ computed through its Stieltjes transform m given in
(5), for the AR(1) model case described in Section III whose
parameters σ2 and θ are estimated using (10) and a bound
kmax = 10 which give σ̂2

n ≈ 1.1 and θ̂n ≈ 0.81. We observe a
good match between the histogram and the estimated density,
which tends to validate the AR(1) model chosen for the noise
correlation across the spectral bands. We also mention that
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similar results have been observed for experiments performed
on the datasets AIRIS, ROSIS, and HYDICE ( [12], [21],
[22]), although the results are not included due to lack of
space.

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 Histogram of the eigenvalues of Rn

f

x+

Fig. 4. Histogram of noise eigenvalues of R̂n and estimated density fµ.

We now evaluate the proposed estimator k̂n given in
Proposition 1 and compute in Figure 5 the probability of
correct detection P(k̂n = k) against the signal-to-noise ratio
defined as SNR = 10 log 1

σ2 . For this simulation, we generate
semi-synthetic data by selecting k = 4 endmembers from
the Cuprite hyperspectral scene [13], after removing noisy
and water absorption channels (p = 188). The fractional
abundances and AR(1) noise are then synthesized according
to the model (4), with α = (0.1, 0.15, 0.18, 0.57)

⊤, θ = 0.4
and the sample size n = 376.

We also compare the proposed estimator to the one of [7],
which is given by

k̂(T )
n = argmin

i∈J1,kmaxK

(
λi(R̂n)

λi+1(R̂n)
> 1 + κn

)
,

and where κn is a threshold chosen according to the Fig.
2 given in [7]. In particular, we observe that the proposed
estimator performs signficantly better. Indeed, k̂(T )

n tends to
underestimate the number of endmembers when γi values are
close which occurs in the simulation. In this case, by Theorem
1 and the continuity of ϕ, spike positions are also close to each
other, leading to an underestimation.
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