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Abstract—Multi-temporal interferometric SAR allows one to
monitor Earth surface displacement from SAR image time
series. In this context, Interferometric Phase Linking (IPL)
is a technique used to denoise the phase of SAR images by
leveraging all possible pairs of interferogram within the time
series. The task can be reformulated as a covariance matrix
fitting problem, where the aim is to recover the expected InSAR
phase structure from a noisy estimate of the covariance matrix of
a pixel patch. Such framework leaves open a choice regarding the
matrix distance that will define the notion of ‘“optimal fitting”.
Existing methods from the state of the art have mostly focused
on maximum-likelihood and least-squares fitting formulations. In
this paper, we explore the use of several Riemannian distances on
the space of covariance matrices (affine invariant, log-euclidean,
and Bures-Wasserstein) for IPL. We derive an optimization algo-
rithm to solve the corresponding fitting problems, and simulations
illustrate the interest of these distances in terms of estimation
accuracy and computational complexity.

Index Terms—Interferometric SAR, interferometric phase
linking, covariance matrix estimation, Riemannian geometry.

I. INTRODUCTION

In recent years, Synthetic Aperture Radar (SAR) missions
have provided data consistently and systematically throughout
long periods of time. The availability of SAR image time-
series has lead to the introduction of Multi-Temporal Interfer-
ometric SAR (MT-InSAR) techniques, which allowed for high-
precision estimation of terrain displacement throughout time
(in the order of sub-centimeters). Among these techniques,
Interferometric Phase-Linking (IPL) or Phase Triangulation
has become a staple method to process zones with distributed
scatterers.

The fundamental idea behind IPL techniques is to leverage
the redundancy of the time series in order to compensate
for the coherence loss witnessed between the images over
time. Hence, these methods produce a (local) estimate of
the phase of each image by leveraging the complex cor-
relation coefficients (which gather both the coherence and
phase difference information) between all possible pairs of
images within the time series (cf. overview in [1]). Seminal
works that introduced the IPL methodology [2], [3] were
based on performing a maximum likelihood estimation (MLE)
while assuming a complex circular Gaussian model and a
given (plug-in) estimate of the coherence matrix. Subsequent
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developments were made by refining the plug-in estimate of
the coherence matrix [4], [5], deriving algorithms robust to
non-Gaussian distributions [6]-[8], or deriving numerically
efficient approximate solutions [9].

The IPL problem was also reframed as a covariance fitting
problem (COFI-PL) in [10]. This formulation corresponds to
the previous MLE approaches when the KL divergence is
chosen as the matrix distance. However, several works have
also shown that considering other distances can be beneficial
for IPL [10]-[12]. In this line of work, this paper proposes
to leverage Riemannian distances on the space of covariance
matrices [13], [14] for IPL. The contributions presented in this
work are the following:

e We extend the COFI-PL framework of [10] to include
several Riemannian distances on the space of covariance
matrices, namely: the affine invariant, the log-euclidean,
and the Bures-Wasserstein distances.

e We derive Riemannian optimization algorithms on the
torus of phase-only complex vectors to solve the corre-
sponding COFI-PL problems.

o Experiments on simulated data illustrate the interest of
the approach in terms of estimation accuracy and com-
putational complexity.

The rest of the paper is organized as follows: Section II in-
troduces the InSAR context and the corresponding covariance
matrix structure. Section III presents the COFI-PL framework,
and the proposed new distances to perform IPL. Section IV
presents the derivation of the optimization algorithms that
solve the corresponding problems. Finally, section V presents
the simulation study that validates the proposed methods.

II. INSAR COVARIANCE MATRIX STRUCTURE

From a given datacube of p co-registered SAR images, we
consider a local multivariate pixel patch {x;}? ,, with x; €
CP, Vi € [1,n]. Each sample x; contains the complex-valued
time-series (in chronological order) of one pixel over the p
snapshots, i.e.

x; =[x, -, xf}T

e Cr, (D

We assume that the patch is homogeneous, i.e., that the set
{x;}?_, contains n pixels with similar scattering and statistical
properties. From the standard physical considerations about
distributed scatterers in INSAR, we can assume that the second
order moment follows:

arg (E [29(z%)*]) = e?0a=00) (g 0) e [1,p]*> (2
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The relation (2) imposes that the modulus-argument decom-
position of the covariance matrix satisfies

3 = mod(X) o ¢ (%) 2o (wwth) 3)
where ¢p : x=re’? > ¢ is the complex phase extraction
operator (which extends to matrices by being applied entry-

wise), and where w is a vector of p complex phases, i.e.:

weT,={wecC[[w]|=1 vee[lp]}. &

60

The aforementioned covariance matrix structure is said to
respect the phase closure property, since for all triplets
(q,4,7) € [1,p]>, we have

arg(Xge) + arg(By;) + arg(E;4) = 0. ®)

This property is at the core of many multi-temporal InSAR
algorithm developments.

III. INTERFEROMETRIC PHASE LINKING AS A COVARIANCE
FITTING PROBLEM

A. Framework

Interferometric phase linking (IPL) consists in estimating
the complex phase vector w from the sample set {x;}" ,
while leveraging the phase closure property stated in (5) [1].
The class of covariance fitting phase linking (COFI-PL) [10]
perform this estimation by fitting the structure (3) to any given
plug-in estimate of the covariance matrix 3. The problem is
formulated as follows:

(2, ¥ owwh)
subject to w €T,

minimize
w

(6)

where 3 is a covariance matrix estimate, ¥ 2 mod(3)
denotes its modulus, and d is a matrix distance (or divergence).
Note that, since the only variable is the vector w, we will use
the compact notation

fg(w) = (3, ¥ owwh) (7

for the objective in (6). The generic COFI-PL problem is thus
finally expressed as

ml‘i}gﬁlze fg(w). (8)
It follows that many IPL algorithms can be proposed by setting
3} and d. In this work, we will focus only on the choice of thf:
matrix distance d. Hence, we will fix a common estimate X
to all methods. This estimator will be the regularized sample
covariance matrix (RSCM), as it is one of the most common
baseline of the IPL literature (cf. e.g. [5]), that is defined as

$5(8) = s+ (1- )"

I, €))

in which S = L ™ x;x/ is the sample covariance matrix
(SCM), and 8 € [0,1] is a regularization parameter. It was
shown in [5], [10] that setting a fixed value for 5 can be
satisfactory for IPL (typically, we will use § = .8 in our
experiments), but adaptive methods could also be found in
[15]. The remainder of this section will now detail possible

choices for the matrix distance d.

B. Existing IPL methods and corresponding distances

1) MLE-type IPL: Seminal IPL algorithms were driven
by the assumption that the sample set follows a circularly
symmetric complex Gaussian distribution, i.e. x = CN (0,3),
with 3 as in (3). The approximate MLE of w (assuming
known W) then corresponds to the choice ¥ = S and the
use of the Kullback-Leibler divergence

digr(A,B) = tr(B7'A) +log[ BA™ ! —p.  (10)

After some manipulations, this MLE reduces to a COFI-PL
problem (8), with

(11

Many works then motivated the use of other plug-in estimators
within this formulation (cf. overview in [4]).

2) Least-squares IPL: The least-squares fitting estimator
corresponds to the Euclidean distance

Kl(w) = wH(@ ' o Sh)w.

dis (A, B) = [|A = B|[f,. (12)
With this distance COFI-PL then reduces to (8), with
fés(w) = —owH(W o 3w, (13)

which was shown to be of great practical interest in IPL
[10]-[12], notably because this distance does not require any
inversion of the covariance matrix plug-in.

C. Proposed new distances for IPL

Complex-valued covariance matrices belong to the space
of Hermitian positive definite matrices 7—[; *. Endowing this
space with a metric yields a Riemannian geometry for covari-
ance matrices. An introduction to these concepts can be found
in [13]. In this scope, many metrics can be envisioned, leading
to various matrix distances, whose practical interests generally
depend on the context and application. This paper will explore
the use of these Riemannian distances in the COFI-PL formu-
lation (6). We will focus on three prominent distances arising
from various information geometry viewpoints [16].

1) Affine invariant (Al) distance: This distance corresponds
notably to the Fisher-Rao information geometry of the Gaus-
sian model [17]. The Al distance is defined as

da;(A,B) = || log(A/*BA™?)|2. (14)
It is characterized by the property
d31(A,B) = di;(XAX", XBX") (15)

for any invertible matrix X, i.e., this distance is invariant when
both matrices are subject to the same affine transformation.

2) Log-Euclidean (LE) distance: This distance corresponds
to an approximation of the affine invariant geometry, that
yields some practical benefits in certain applications [18]. The
LE distance is defined as

dip(A,B) = ||log(A) — log(B)|[5. (16)
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3) Bures-Wasserstein (BW) distance: This distance is re-
lated to optimal transport of the Gaussian distribution, its
corresponding geometry is studied in [19]. The BW distance
is defined as

d3w(A,B) = Tr{A} + Tr{B} — 2Tr{(A?BA"?)"2}.
a7

IV. RIEMANNIAN OPTIMIZATION FOR COFI-PL

Given the distances from Section III-C, we now address
the computation of the solution of (6). To do so, we resort to
Riemannian optimization [20] on the torus T,, defined in (4).

A. Riemannian gradient descent

For the sake of conciseness, we will simply rely on the
Riemannian gradient descent algorithm on T, endowed with
the Euclidean metric. More details concerning this choice can
be found in [10]. In short, the iterates are produced as follows:

W1 = or(we — o gradf(wy)), (18)

In which
o or is the retraction operator that was defined after (3)
o The structure of the problem leads to the following
definition of the Riemannian gradient:

gradf(w;) = V f(w;) —Re{V f(w;)" ow; }owy, (19)

where V f(w;) is the Euclidean gradient of the objective
function at wy.

e oy is a step-size, that will be adaptively chosen at each
step ¢t according to the Armijo backtracking line search
[21].

Given this algorithm, it remains to compute the Euclidean
gradients V f(w;) for the objective in (7) constructed with
the three distances presented in section III-C.

B. Euclidean gradients of f%

The Euclidean gradient of a function f : T, — R at point
w; is the unique vector defined as

(Vf(w:), &) =Df(we) [€],

where (-, -) is the standard Euclidean inner product, and where
Df(w:)[€] is the directional derivative of f with respect to
w, in direction €. The objective function fg in (7) can be
decomposed as

(20)

fE(w) = g(h(w)) 1)
with R
h:WETleIIOWWHE’H2'+ (22)
and .
g:TeH T d*(X,2)eR (23)

where d stands for any distance in (14) (16), or (17): we
will use the notation gar, grg, and ggw in accordance. The
directional derivative f with respect to w computed along the
direction &y, € T T, can be expressed through the following
chain rule:

Dg(h(w))[éw] = Dg(h(w))[Dh(w)[¢w]] (24)

Algorithm 1 Riemannian gradient descent for (6)

1: In: ﬁ: S ,H;r+, de {dAIa drg, dBW}, Wo € Tp, g € Rj_
2: Sett=1

3: repeat

4 Compute Euclidean gradient with Proposition 1-2-3
5: Compute Riemannian gradient with (19)

6 Update «; with Armijo backtracking [21]

7 Produce iterate w; with (18)

8 t=t+1

9: until convergence

10: Out: W = wepq € T

We thus need to compute two quantities:

o Dh(w)[&w] for & € T T, is directly obtained from the
expression of h in (22) as

Dh(w)[éw] = ¥ 0 &uw' + W owell

o Dg(X)[{x] for & € TsH,; " depends on the chosen
distance, and the following results can be obtained from
[22] and [14]:

Dgar(2)[ex] = 2T {8 55 10g (8 £355%)}
Dgre(2)[¢x] =2Tr{[S ™ og(£) —dlog(E) [log(£)])€x}
Dygnw () [¢x] =Tr{[1- 3" (=" 28"y e}
Combining the above directional derivatives, and by identifi-
cation with (20), we obtain the following gradients for each
objective function.
Proposition 1: The Euclidean gradient of fﬁJAI at point wy
is defined as

. 1/2

vfﬁ:AI(wt):4[2 / o l/2

hw) s 8

log(S =1 ow, (25)
Proposition 2: The Euclidean gradient of f;E at point wy

is defined as

VfEE(w) = 4 Dlog(h(wy))[log(h(w;)) — log(X)]¥w,
(26)
and the quantity Dlog(X)[¢{x] can be evaluated numerically
thanks to the relation [23]

«( 8-

Proposition 3: The Euclidean gradient of f2" at point w;
is defined as

Dlog(%)[¢s]

log(%3) @7

VY (w) = 2.1-574 (8"

hw) S8 [ bw, (28)

The propositions just presented allow to compute the Rie-
mannian gradient for all the proposed COFI-PL formulations
using (19) and thus, to perform the Riemannian gradient
descent using the iteration (18). The resulting algorithm is
summarized in the box Algorithm 1.
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Fig. 1: Cost function optimizations (log-scale) for varying sample sizes (p = 10, 20, 30, 40, 50) for KL, Euclidean (LS),
Al, LE and BW distances using the Armijo-style Steepest Riemannian Gradient Descent optimisation w.r.t. iterations (a-e) and

runtime (f-j). The parameters were set to n = 2p, p = 0.7.

V. NUMERICAL RESULTS
A. Methods

In this section, we compare the merits of the different
distances that can be used in (6). The algorithm developed in
this paper allows us to use the Affine-Invariant (AI) distance in
(16), the Log-Euclidean (LE) distance in (14), or the Bures-
Wasserstein (BW) distance in (17). We also include in this
study the Kullback-Leibler (KL) divergence in (11) and the
Euclidean distance (LS) in (13), that were studied in [10].

B. Setup parameters

The comparisons are conducted on simulated data with
varying underlying parameters. For a chosen dimension p the
covariance matrix 3 is constructed as in (3), where W is set
as a Toeplitz matrix of correlation coefficient p, i.e.,

(@] = pl7 " (29)

Phase differences vary linearly between O and 2 radians, i.e.
Ajy1; = 041 — 0; = 2/p rad. The samples are simulated
through a Gaussian distribution as @; ~ CN(0,X). Then the
RSCM as defined in (9), is used as plug-in estimator in the
COFI-PL formulation (6).

C. Comparison of distances in terms of computational load

Because we rely on the same generic algorithm (Riemannian
Gradient Descent with Armijo backtracking rule [21]), we can
fairly compare the complexity by investigating the number
of required iterations, the computation time, as well as the
computational complexity associated with each distance. For
varying dimensions, the value of the cost function is observed
throughout the optimisation process w.r.t. its iterations (Fig.
la-le) and its runtime (Fig. 1f-1j). The LS distance was
always observed to lead to the fastest convergence. For smaller
sample sizes, the LE distance proved to be the most time
consuming, taking almost twice as much time to minimize

compared to the second slowest algorithm. However, with
increasing sample sizes the Al distance starts having the
largest runtime. For a more complete understanding of this
phenomenon, the computational complexity of each distance
must be discussed. Based on the expressions of the gradients
previously presented, the Euclidean gradient has the lowest
computational complexity, namely O(n?), compared to the
gradients of the other distances which present a computational
complexity of O(n?). A particular note must be made for the
LE and Al distances. While in the O(n?) order of complexity,
both distances require multiple operations with this same
complexity order to be computed at each iteration, namely, for
the LE distance, the matrix logarithm, its derivative, and the
inverse of the matrix, while for the Al distance, an Eigenvalue
Decomposition is carried out in order to evaluate the inverse
square root of a matrix and its logarithm. For both cases, this
leads to a high complexity overhead, with a higher overhead
for the LE which is visible for smaller sample dimensions.
However, Al involves more complex matrix operations that
start to affect runtime with increasing matrix dimensions.

D. Comparison of distances in terms of estimation accuracy

Methods are compared by computing the Mean Squared
Error (MSE) on the phase of the last date (i.e. [w]p), that is
evaluated using 1000 Monte-Carlo trials. For each distance,
the optimisation process was conducted for 3000 iterations or
until the tolerance fell below the O(10~*) order of magnitude.
In this scenario, we set p = 10 with varying n or varying p:

1) n € [p,4p], for p? = 0.7 in Fig. 2.

2) pP €]0.5,0.9], for n =p+ 2 in Fig. 3.

We also notice that no particular trend differences were
observed when changing the dimension p. The results show
that the MSE decreases for algorithms with either increasing
n (Fig. 2), or increasing temporal coherence (Fig. 3), which
was to be expected. We also notice a similar trend for all
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At date 10, rho=0.7 with p=10. Estimator:SCM with regularization:SK
0.07

— KL

LS
— Al
— LE
—— BWass

0.05 1

MSE

0.04 1

0.03 1

0.02 1

10 15 20 25 30 35

Fig. 2: MSE of the last date for KL, Euclidean (LS), Al, LE
and BW distances w.r.t. n € [p,4p] for p = 0.7 and p = 10

methods, with no crossing in terms of performance. Overall,
LE provides the best accuracy for all sample dimensions and
all coherence values. However, since the performances tend
towards similar values at high coherence, the computational
costs and time constraints could be taken into consideration
when choosing which distance to use.

VI. CONCLUSIONS

In multitemporal interferometric SAR, this paper investi-
gated the use of Riemannian distances (affine invariant, log-
Euclidean, and Bures-Wasserstein) on covariance matrices in
order to estimate phase differences between the images. The
resolution of the corresponding covariance fitting problems
was addressed using Riemannian optimizations. Simulations
providing comparisons between the different choices of dis-
tances evidenced a trade-off between computational complex-
ity and estimation accuracy. An adaptive selection of the
matrix distance with respect to the estimated coherence of the
pixel patch could thus bring the best of both worlds.
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