
Branch-and-bound algorithm for exact ℓ0-norm
sparse spectral unmixing

Mehdi Latif⋆, Gwen Samain⋄, Nils Foix-Colonier⋆, Sébastien Bourguignon⋆

Nantes Université, École Centrale Nantes, CNRS
Laboratoire des Sciences du Numérique de Nantes (LS2N), UMR 6004

F-44000, Nantes, France
⋆Surname.Name@ls2n.fr, ⋄samain.gwen@laposte.net

Abstract—We propose an algorithm that exactly solves the
cardinality-constrained sparse spectral unmixing problem. Based
on recent works on ℓ0-norm exact optimization, a branch-
and-bound architecture is specifically developed for sparse un-
mixing, under nonnegativity and sum-to-one constraints. The
procedure boils down to solving a finite number of sum-to-one
constrained nonnegative least-squares problems for upper- and
lower-bounding the global optimal value, which are solved effi-
ciently. Numerical simulations show that our method outperforms
competing ones in terms of support identification and estimation,
and that it remains computationally tractable as long as the
problem size is limited or the signal-to-noise ratio is high enough.
A free C++ implementation is made available.

Index Terms—spectral unmixing, sparsity, ℓ0 norm, global
optimization, branch-and-bound.

I. INTRODUCTION

Hyperspectral imaging extracts information about the elec-
tromagnetic spectra reflected by an illuminated scene, col-
lected over a set of spatial locations. It has found many
application fields, including remote sensing for Earth and plan-
etary science, agriculture, food industry, chemistry. Among the
numerous hyperspectral data processing techniques, spectral
unmixing (SU) is certainly one of the most studied topics [1].
Originally formulated as a blind source separation problem, it
aims to factorize an hyperspectral data cube as a collection of
pure spectral signatures (endmembers) and associated weights
at each pixel location. In particular, the linear mixing model
[2] assumes that a measured reflectance spectrum decom-
poses as the linear combination of endmembers weighted by
their fractional abundances. Since abundances are proportions,
abundance non-negativity (ANC) and sum-to-one (ASC) con-
straints are usually added to the model. Abundance estimation
is then known as Fully Constrained Least-Squares (FCLS) [3],
which minimizes the ℓ2-norm misfit under ANC and ASC.

In many cases, the abundance set is expected to be sparse,
since only a few endmembers are expected to be active
in each decomposition. Although FCLS solutions are easily
computed and do exhibit some sparsity due to nonnegativity,
estimated abundances often spread over a substantial number
of components with low values, which lacks interpretability
and, most of all, can fail in detecting the true endmembers [4].

This work has been partially funded by the French national research
agency (ANR), project ANR-16-CE33-0005-01 MIMOSA (Mixed integer
programming methods for sparse approximation), https://mimosa.ls2n.fr/.

Enforcing more sparsity may merely ensure a better mixture
estimation. Sparse spectral unmixing has been addressed in the
literature, either by incorporating sparsity-enhancing penalties
or constraints in the least-squares fit [5], [6], [7], or by iterative
forward [5] or backward [8] methods. In this paper, we address
the ℓ0-norm formulation for sparse unmixing (hereafter, ℓ0-
SU), where sparsity is explicitly imposed by constraining the
number of non-zero abundances. We consider pixel-wise abun-
dance estimation, where the reflectance spectrum y ∈ RNλ is
decomposed into K endmembers taken in dictionary S =
[s1, . . . , sP ] ∈ RNλ ×P , with related abundances a ∈ RP ,
by solving the cardinality-constrained optimization problem:

P : min
a∈[0,1]P

1
2

∥∥y−Sa∥∥2
2

s.t. 1⊺a = 1, ∥a∥0 ≤ K, (1)

where 1 denotes the vector composed of ones of appropriate
dimension, and the ℓ0 “norm” ∥a∥0 counts the number of
non-zero elements in a.

Although exact ℓ0-norm optimization (the solution is proved
to be optimal) is NP-hard [9], it has been successfully
addressed in the general setting (i.e., without ANC and ASC)
for relatively small problems, first with mixed-integer pro-
gramming (MIP) reformulations and generic MIP solvers [10],
then with dedicated, faster, branch-and-bound algorithms [11],
[12], [13]. Exact ℓ0-SU as in (1) was also formulated as a
MIP in [4], where solutions were shown to achieve better
estimates than competing methods. In particular, in many
unmixing problems, the number of active elements searched
in the decomposition rarely exceeds a few units, therefore the
complexity, although combinatorial, remains limited.

This paper presents a branch-and-bound (BB) algorithm
for ℓ0-SU. In Section II, a specific architecture is built con-
sidering ANC and ASC. Section III explores its practical
implementation. Performance in terms of solution quality
and computational efficiency is assessed in Section IV. The
discussion in Section V concludes the paper.

II. BRANCH-AND-BOUND DESIGN

The BB method [14] is an algorithm paradigm widely used
in operations research to tackle hard optimization problems
for which exhaustive search is unconceivable. It implicitly
enumerates the entire search space by solving a sequence of
simpler problems, which provide bounds on the optimal value;

2607ISBN: 978-9-46-459362-4 EUSIPCO 2025



these bounds are then used to avoid exploration of regions
that are proved to yield suboptimal solutions. In parallel, a
tree structure is constructed in which a node represents a part
of the search space. Children of this node are produced by
partitioning it into subspaces and related subproblems; this
partition is obtained by setting the value of a decision variable:
the branching procedure. Resulting children are stored in a
list, waiting to be solved. The aim is to prune as many nodes
as possible by the bounding procedure. The optimal solution
is found once all nodes have been implicitly explored, which
occurs in a finite number of steps, all the smaller as such
procedures are performed efficiently. This Section details the
main constitutive elements of our algorithm to solve ℓ0-SU.

A. Branching procedure

Since the ℓ0-norm constraint (the hard part) mostly indicates
binary decisions (which variables should be non-zero?), a
decision tree is built, where the branching procedure generates
two subproblems of the form: “include sp” (left branch) vs.
“discard sp” (that is, ap = 0, right branch). Note that the first
choice does not impose ap ̸= 0 (which is hard to consider)
and the two branches are not mutually exclusive, but this does
not question the validity of the procedure. Moreover, it will
be shown in Section II-C that the branching variable choice
ensures ap ̸= 0 in the related subproblem.

At a given node, the solution space has undergone a certain
number of left and right branchings. Let Z index variables that
were set to 0, Z denote the complementary index set among
[1, . . . , P ], and C ⊂ Z index the variables explicitly included
in the solution. Let also C = Z \C index the remaining
undecided variables. The resulting subproblem then just reads:

min
aZ∈[0,1]#Z

1
2

∥∥y−SZaZ
∥∥2
2

s.t. 1⊺aZ = 1, ∥aC∥0 ≤ K −#C

(2)
where # denotes the cardinality, SZ is the submatrix formed
by columns of S indexed by Z , and aZ is the corresponding
subvector of a. The value of the ℓ0-norm term is the number of
remaining non-zero variables that can still be included in the
solution since, by construction, ∥aZ∥0 = 0 and ∥aC∥0 = #C.

After K left branchings, one has #C = K, that is, aC =
0. The node is a leaf that does not have to be divided any
more: the subproblem solution is K-sparse and is obtained by
restricting Z to C in (2) (see (3) in Section II-B1).

B. Bounding operations

At each node, an upper and a lower bound for the corre-
sponding problem are defined, that should be easily computed.

1) Upper bound and reduced-size FCLS: In BB design,
an upper bound is obtained by adding constraints to the
subproblem, simplifying its hard part. Here, we consider the
particular solution with all undecided variables aC set to zero:

PUB : UB = min
aC∈[0,1]#C

1
2

∥∥y−SCaC
∥∥2
2

s.t. 1⊺aC = 1. (3)

When exploration reaches the node where C identifies with the
support of the global optimizer, the latter is the solution to (1)
(without being proven yet) and UB gives the global minimum.

2) Lower bound and inefficiency of ℓ1-norm relaxation: A
lower bound is generally obtained by relaxing the hard part
of the subproblem. Finding a relaxation for the problem (2)
amounts to relax the ℓ0-norm constraint. Note that the lower
bound definition only makes sense if K > #C in (2). When
K = #C, the considered node is a leaf and its subproblem is
solved exactly (see Section II-A).

The ℓ1 norm is often considered for convex relaxation of the
ℓ0 norm—which requires additional assumptions (such as box
constraints) in order to cope with the non-homogeneity of the
ℓ0 function. It was used for sparse branch-and-bound design
in a generic context, e.g. [11], [13], [12]. In our case, however,
such a choice is useless due ANC and ASC. More precisely,
let SLp := {a ∈ RP ; ∥a∥p ≤ L} ∩ [0, 1]P for p ∈ {0; 1} and
L ∈ N∗. We have the following proposition.

Proposition 1. The convex hull of the ℓ0-norm ball on [0, 1]P

is the ℓ1-norm ball on [0, 1]P . That is: conv
(
SL0

)
= SL1 .

The proof can be found as supplementary material there; a
graphical illustration is given in Figure 1.

x1

x2

1

1

0
v2

v1

x1

x2

x3

1

2

1

2

1
2

0

v1

v3

v2

Fig. 1. Illustration of Proposition 1 for P = 2 and L = 1 (left), and for
P = 3 and L = 2 (right): ℓ0-norm ball on [0, 1]P (SL

0 , green) and ℓ1-norm
ball on [0, 1]P (SL

1 , blue). In red, the boundary {∥a∥1 = L} ∩ [0, 1]P and
its vertices vi.

Proposition 1 shows that convexifying the problem in (2)
amounts to substituting the ℓ0 norm by the ℓ1 norm, that is,
replacing constraint ∥aC∥0 ≤ K −# C by ∥aC∥1 ≤ K −# C.
However, the ASC imposes ∥aZ ∥1 = ∥aC∥1 + ∥aC∥1 = 1,
hence ∥aC∥1 ≤ 1, which dominates the former constraint. In
other words, there is no better convex relaxation of the problem
in (2) than just removing the ℓ0-norm constraint. Then, the
lower bound computed at each node just reads:

PLB : LB = min
aZ∈[0,1]#Z

1
2

∥∥y−SZaZ
∥∥2
2

s.t. 1⊺aZ = 1. (4)

Note that some works investigated the use of non-convex ap-
proaches to sparse unmixing, such as ℓp-norms with p ∈]0, 1[
(e.g. [7], [15]). In our case, however, global optimization of the
relaxed subproblem is required so that it gives a valid lower
bound, for which convexity is a guarantee.

C. Branching variable

The choice for the branching variable usually exploits the
solution of the considered relaxed subproblem. We use the
strategy proposed in [11], which considers the component

2608



with maximum amplitude among undecided variables in the
solution to (4):

p⋆ = argmax
p∈C

a∗p, with a∗
Z = argminPLB. (5)

It assumes that component sp⋆ is likely to belong to the
solution of the subproblem, so that developing the search tree
should quickly identify the optimal support.

Figure 2 finally summarizes the core steps of our algorithm,
where a node is described by the index partition (C, C,Z).

N = (C, C,Z)
UB(N ) by (3)
LB(N ) by (4)

select p⋆ by (5)

N ℓ = (Cℓ, Cℓ
,Zℓ)

UB(N ℓ) by (3)
LB(N ℓ) = LB(N )

include sp⋆

Cℓ = C ∪ {p⋆}
Cℓ = C \ {p⋆}
Zℓ = Z

N r = (Cr, Cr,Zr)
UB(N r) = UB(N )

LB(N r) by (4)

exclude sp⋆

Cr = C
Cr = C \ {p⋆}
Zr = Z ∪ {p⋆}

Fig. 2. Main steps of our ℓ0-SU algorithm: node splitting, variable selection,
subset updates and bound updates.

III. PRACTICAL IMPLEMENTATION

A. Tree exploration and optimality proof

The algorithm starts at the root node, where all variables
are undecided. With notations introduced in Section II-A,
Z = ∅, Z = [1, . . . , P ] , C = ∅ and C = Z . Problem (2)
is solved on all variables, providing a first lower bound. From
the variable selection rule in Section II-C, the variable with
maximal amplitude in the corresponding minimizer, say a∗p1

,
is selected to operate a first division (see Section II-A and
Figure 2). If a∗p1

= 0, then a∗ = 0 (which is unlikely to
occur at first iteration). Otherwise, the node is divided. On the
left child node, an upper bound is computed by solving the
problem in (3) for C = {p1}. Let us observe that, as a∗p1

̸= 0,
the set of non-zero variables Z is unchanged, therefore the
lower bound inherits that of its parent node. On the contrary,
for the right child node, the set C, indexing variables included
in the solution, is inherited from its parent node, and so is the
upper bound, but a new lower bound needs to be computed,
since p1 was removed from Z . Such propagations of bounds
are summarized in Fig. 2.

The list of existing nodes, say L, is stored in memory with
their related lower bounds, and the best (i.e., lowest) upper
bound among all computed ones is kept, denoted by UB, as
well as the corresponding minimizer, denoted by a∗

UB. The
process is repeated by selecting a new node in L. Let LB
denote the lower bound obtained at that node (see (4)), and
let a∗

LB denote the corresponding minimizer. Then:

• if the node is a leaf (that is, # C = K), then a∗
LB is

also feasible, both lower and upper bounds coincide: if
necessary, UB and a∗

UB are updated;
• if LB ≥ UB, then it is proved that all solutions obtained

from the current node will be suboptimal (feasible solu-
tions will give even higher values than LB): the node is
fathomed by dominance and removed from L;

• if LB < UB and ∥a∗
LB∥0 ≤ K, i.e. a∗

LB is feasible —
which may happen since ANC favors zero values— then
the current node is pruned by optimality, and updates
(UB = LB, a∗

UB = a∗
LB) are performed;

• otherwise, the node cannot be pruned and is divided, and
its two children are added to the list of existing nodes
(see Section II-C and Fig. 2).

We use depth-first search [14] in order to schedule the node
exploration, which is a standard choice in the sparse branch-
and-bound literature [11], [13]. It explores in priority the nodes
furthest from the root, aiming at quickly finding feasible K-
sparse solutions. Once the search space has been completely
explored, i.e., L = ∅, the optimality proof is achieved, a∗

UB
being the global minimizer of Problem (1).

The pseudo-code for our algorithm is given in Algorithm 1.

B. Computation of bounds

Most computations consist in evaluating upper and lower
bounds at each node (Eqs. (3) and (4), respectively). Lower
bound problems can be viewed as particular instances of
underdetermined (#C > Nλ), ℓ1-norm-constrained, sparse
problems, for which the ℓ1 norm equals 1. We solve them by
an homotopy continuation method [16], certainly one of the
most efficient strategies for the targeted problem sizes. Starting
from the zero solution, a sequence of ℓ1-norm penalized
problems are solved, where the penalty parameter is iteratively
decreased at the sequence of values where the support of
the solution changes, until the ℓ1 norm sums to one. This
strategy can easily include box constraints—in our case, i.e.,
ap ∈ [0, 1] [11]. On the contrary, upper bound computations
in (3), which only involve a few variables, are quadratic
programs that can be solved very efficiently by off-the-shelf
solvers. In this work, such computations are run with the
qpOASES software [17], under licenses LGPL-2.1.

Attached to this work, we distribute a free C++ implemen-
tation under license LGPL-3.0. All material including source
code, installation procedure and usage instructions can be
found at the Mimosa (mixed integer programming methods
for sparse approximation) repository.

IV. NUMERICAL RESULTS

In this section, algorithmic performance is evaluated on
numerical simulations using the United States Geological
Survey library [18], composed of 498 spectra covering Nλ =
224 spectral bands. A sub-dictionary is created by randomly
extracting P columns, among which K-sparse mixtures are
generated by randomly selecting the active endmembers. No
library pruning was performed, therefore endmembers are

2609



Algorithm 1: BB sparse unmixing algorithm
Data : y, S, K
Result: â := Argmin(P)
// Initialization

L ← ∅, C ← ∅, C ← {1, . . . , P}, Z ← ∅, i = 0
â← 0, UB← 1

2∥y ∥
2
2

// add root node to the list

N ← (C, C,Z), L ← L ∪ N
// Main loop

while L ≠ ∅ do
i← i+ 1
// take last node in L (depth-first search)

pop N = (C, C,Z), L ← L \ N
prune← false
// Node evaluation procedure

if i = 0 or N is left child then
UB := minPUB, aUB := argminPUB //Eq. (3)

if i = 0 or N is right child then
LB := minPLB, aLB := argminPLB //Eq. (4)

// Bound procedure

if UB < UB then
UB← UB, â← aUB

if LB ≥ UB then
// Fathom by dominance

prune← true
else if ∥aLB∥0 ≤ K then

// Fathom by feasibility

prune← true, â← aLB, UB← LB
end
if # C = K then

prune← true // Fathom by optimality

// Branch procedure

if C ̸= ∅ and prune = false then
q ← argmaxi∈C a

LB
i

// Insert Right and Left children in L

N r ← (C, C \ {q},Z ∪{q}), L ← L ∪N r

N ℓ ← (C ∪{q}, C \ {q},Z), L ← L ∪N ℓ

end
end

quite highly correlated. Amplitudes are generated uniformly
in {a ∈ [τ, 1]K |

∑
p ap = 1}, with τ = 0.05. Gaussian

white noise is added with variance σ2, by controlling the
signal-to-noise ratio SNRdB = 10 log10(∥Sa∥2/(Nλ σ

2)). In
the following simulations, P varies from 20 to 400, K varies
from 2 to 8, SNR varies from 60 to 30 dB, and results are
averaged over 10 instances for each configuration. Typical
mixtures at different SNRs are shown in Figure 3 (top).

A. Solution quality

The ℓ0-SU solution is compared to estimates obtained by:
• restricting the FCLS solution to its K biggest values;
• considering ℓ1-norm sparsity. To that aim, we remove

the ASC, and the ℓ1-norm constraint is varied until the
solution has exactly K non-zero values;

• ℓp-norm sparsity, with p = 0.5, still without ASC. The
(local) optimizer is that provided in [7];

• the backward elimination method in [8], which iteratively
removes the small components in the FCLS solution.

All solutions are tuned to be K-sparse. Due to lack of space,
only partial results are shown. More results and all data sets
are available as supplementary material1. Let

◦
a and â denote

the true and estimated abundance vectors, respectively. Centre
and bottom rows in Fig. 3 respectively show the support error
(SE) and the signal to reconstruction error (SRE), defined by:

SE := 1
2

∥◦a− â∥0
K

× 100, SRE := 10 log10
∥◦a∥

2

∥◦a− â∥2
,

averaged over instances and problem cardinality. On such

SNR = 60 dB SNR = 45 dB SNR = 30 dB

re
fle

ct
an

ce

1 1.5 2 2.5
0

0.5

1

1 1.5 2 2.5
0

0.5

1

1 1.5 2 2.5
0

0.5

1

SE
(%

)

0 200 400
0

0.5

1

1.5

2

0 200 400
0

10

20

30

0 200 400
0

20

40

60

SR
E

(d
B

)

0 200 400
52

54

56

58

60

0 200 400
20

25

30

35

40

45

0 200 400

5

10

15

20

25

Fig. 3. Typical spectral mixtures at different noise levels with K = 3 (top).
Noise-free mixture (red), data (blue) and elementary components (black).
Support error (center) and signal to reconstruction error (bottom) for ℓ0-SU
and competing methods, averaged over instances and problem cardinality.

problems, ℓ1- and ℓ0.5-norm solutions were far from reaching
comparable performance to other methods, in particular due to
the disadvantaging constraint imposing them to be exactly K-
sparse. ℓ0-SU always gives lower errors than its competitors.
At the highest SNR, ℓ0-SU always retrieves the truth, for
any K and P . Of course, the performance worsens as SNR
decreases: the global optimum found by solving (1) may more
likely be obtained on a support other than the true one.

B. Computational efficiency

Computing times are evaluated as a function of the problem
difficulty. Optimization is run on a single thread, using a laptop
computer on Ubuntu 22.04.5 equipped with 32 Go RAM
and Intel Core Ultra 7 165U processors. Some representative
results are given in Table I; more complete ones can be found
as supplementary material1. Complexity obviously depends on
the combinatorial parameters K and P ; it is also impacted by

1Material can be downloaded there.

2610



the noise level: as noise gets stronger, discriminating solutions
becomes harder, so the number of explored nodes increases.
As long as the problem size (K,P ) is relatively small or the

SNR 60 P = 50 P = 100 P = 200 P = 400
K = 2 1m (6m) 1m (13m) 4m (36m) 11m (0.1)
K = 4 3m (11m) 5m (19m) 11m (43m) 43m (0.5)
K = 6 4m (9m) 9m (45m) 21m (1.0) 0.3 (2)
K = 8 5m (16m) 13m (0.3) 0.1 (12) 70 (12)(1)

SNR 45 P = 50 P = 100 P = 200 P = 400
K = 2 1m (6m) 2m (12m) 4m (35m) 13m (0.1)
K = 4 2m (9m) 32m (56m) 28m (64m) 1 (8)
K = 6 7m (21m) 35m (95m) 83 (18) 133(1) (170)(1)

K = 8 25m (69m) 1 (1) 7(1) (15)(1) 15(7) (27)(7)

SNR 30 P = 50 P = 100 P = 200 P = 400
K = 2 1m (6m) 9m (32m) 28m (68m) 53m (0.4)
K = 4 13m (33m) 0.1 (0.2) 1 (1) 14(2) (39)(1)

K = 6 0.1 (0.2) 1 (1) 157(1) (30)(1) 116(4) (103)(3)

K = 8 0.2 (0.2) 20 (3) 109(1) (58) NaN(10) (392)(9)

TABLE I
COMPUTING TIMES FOR OUR BB ALGORITHM (FOR THE GUROBI MIP

SOLVER) AVERAGED OVER 10 INSTANCES. TIMES IN SECONDS, EXCEPT
’M’ (MILLISECONDS). THE EXPONENT MARKS THE NUMBER OF

INSTANCES FOR WHICH THE 1 000- S TIME LIMIT WAS REACHED.

SNR is high, problems can be solved in a few milliseconds,
which is very efficient regarding the combinatorial complexity.
For example, the average 35-ms time for SNR = 45 dB,
K = 6 and P = 100 corresponds to

(
100
6

)
∼ 1.2 109

possible combinations, whereas the search tree developed by
our algorithm evaluates only 125 nodes in average. When both
the noise level and the problem size increase, ℓ0-SU faces
exponential complexity and computing times can reach several
hundreds of seconds, or even exceed the 1 000 s time limit.

Table I also gives the computation times for the Gurobi
commercial optimizer [19], that solves the equivalent MIP
formulation [4]:

min
b∈{0,1}P ,a∈[0,1]P

1
2

∥∥y−Sa∥∥2
2

s.t.
{

1⊺
P a = 1,

∑
p bp ≤ K

0 ≤ ap ≤ bp.

In most cases, our approach is more efficient, and even more
when computing times are small. On the most difficult tested
instances, however, Gurobi becomes faster. Note that such
state-of-the art software benefits from many developments
(mathematical refinements, computer engineering), that are
not implemented in our algorithm, which opens up promising
improvement perspectives.

V. CONCLUSION

The proposed branch-and algorithm, tailored for spectral
unmixing problems with nonnegativity and sum-to-one con-
straints, is able to efficiently solve exact ℓ0-norm sparse
unmixing problems, as long as the number of endmembers
or the cardinality constraint is small. This is particularly inter-
esting for strongly supervised problems with a small library
(or after library pruning [20]), or in unsupervised contexts,
where the number of endmembers extracted from the observed
scene rarely exceeds a few tenths. Of course, combinatorial
complexity makes it harder to solve in higher dimensional
problems, and so is it when the noise level increases. If the

computational burden of ℓ0-SU surely exceeds that of simpler
methods, better estimation capacity may still make it worth
in particular contexts. We also remark that, in general, the
optimal solution is reached far before optimality was proved,
therefore unguaranteed solutions obtained by limiting the
computing time may also be considered with interest. Finally,
if sparsity helps regularizing unmixing problems, tuning the
sparsity level K may be a challenging practical issue. To that
purpose, our current research is investigating multi-objective
formulations via dedicated branch-and-bound algorithms.

Interested readers are invited to use and challenge our
solver, available there.

REFERENCES

[1] N Keshava and J F Mustard. Spectral unmixing. IEEE signal processing
magazine, 19(1):44–57, 2002.

[2] R B Singer and T B McCord. Mars-large scale mixing of bright and dark
surface materials and implications for analysis of spectral reflectance.
In Lunar and Planetary Science Conference Proceedings, volume 10,
pages 1835–1848, 1979.

[3] D C Heinz and Chein-I-Chang. Fully constrained least squares linear
spectral mixture analysis method for material quantification in hyper-
spectral imagery. IEEE Trans. Geosci. Remote Sens., 39(3):529–545,
2001.

[4] R Ben Mhenni, S Bourguignon, J Ninin, and F Schmidt. Spectral
unmixing with sparsity and structuring constraints. In Proc. IEEE
WHISPERS, Amsterdam, The Netherlands, September 2018.

[5] M. D. Iordache, J. M. Bioucas-Dias, and A Plaza. Sparse unmixing
of hyperspectral data. IEEE Trans. Geosci. Remote Sens., 49(6), June
2011.

[6] J M Bioucas-Dias, A Plaza, N Dobigeon, M Parente, Q Du, P Gader, and
J Chanussot. Hyperspectral unmixing overview: Geometrical, statistical,
and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth
Observ., 5(2):354–379, April 2012.

[7] D Tuia, R Flamary, and M Barlaud. Nonconvex regularization in remote
sensing. IEEE Trans. Geosci. Remote Sens., 54(11):6470–6480, Nov
2016.

[8] J Greer. Sparse demixing of hyperspectral images. IEEE Trans. Image
Process., 21:219–28, 06 2011.

[9] B K Natarajan. Sparse approximate solutions to linear systems. SIAM
J. Comput., 24:227–234, 1995.

[10] D Bertsimas, A King, and R Mazumder. Best subset selection via a
modern optimization lens. Ann. Stat., 44(2):813 – 852, 2016.

[11] R Ben Mhenni, S Bourguignon, and J Ninin. Global optimization
for sparse solution of least squares problems. Optim. Methods Softw.,
37(5):1740–1769, 2022.

[12] T Guyard, C Herzet, C Elvira, and A-N Arslan. A new branch-and-
bound pruning framework for ℓ0-regularized problems. In Proc. ICML,
2024.

[13] H Hazimeh, R Mazumder, and A Saab. Sparse regression at scale:
Branch-and-bound rooted in first-order optimization. Math. Prog., 2021.

[14] L A Wolsey and G L Nemhauser. Integer and Combinatorial Optimiza-
tion. John Wiley & Sons, July 1999.

[15] L Drumetz, T Meyer, J Chanussot, A Bertozzi, and C Jutten. Hyper-
spectral Image Unmixing with Endmember Bundles and Group Sparsity
Inducing Mixed Norms. IEEE Trans. Image Process., 28(7):3435–3450,
July 2019.

[16] MR Osborne, B Presnell, and BA Turlach. A new approach to variable
selection in least squares problems. IMA J. Numer. Anal., 20(3):389–
403, 07 2000.

[17] H J Ferreau, C Kirches, A Potschka, H G Bock, and M Diehl. qpOASES:
A parametric active-set algorithm for quadratic programming. Math.
Prog. Comput., 6(4):327–363, 2014.

[18] R N Clark et al. USGS digital spectral library splib05a. US Geological
Survey, Digital Data Series, 231, 2003.

[19] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024.
[20] X Xu, B Pan, Z Chen, Z Shi, and T Li. Simultaneously multiobjective

sparse unmixing and library pruning for hyperspectral imagery. IEEE
Transactions on Geoscience and Remote Sensing, 59(4):3383–3395,
2021.

2611


