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Abstract—The entropy rate of a stochastic process corresponds
to the asymptotic difference between the entropies of consecutive
sample blocks as their size increases. Widely used in information
theory, it also serves as a key marker for signal characterization
in classification tasks. Recently, we studied the entropy rate of
a signal at different scales using a multiscale approach. The
latter generates a set of signals from the original one either
(i) by applying a coarse-graining (CG) procedure —where the
signal is filtered with an average filter of order equal to the
scale and then decimated by a factor equal to the scale— or
(ii) by directly decimating the original signal. In this paper,
we extend the multiscale framework to the cross-entropy rate,
introducing the multiscale cross-entropy rate (MCER). MCER
can be defined either as the sum of cross-entropy rates across
scales or as a vector storing these values. By applying it to
Gaussian ARMA processes, we aim to understand the insights
provided by the multiscale procedure and to define the influence
of the process parameters on the cross-entropy rate at each scale.
To this end, we present the properties of ARMA processes after
applying the multiscale procedure, provide analytical expressions
for the MCER, and outline a practical method for deriving it.
The MCER is a potential alternative to multiscale cross-sample
entropy and its variants, which have been used in biomedical
applications and finance to quantify joint synchrony between
signals.

Index Terms—cross entropy, rate, ARMA processes.

I. INTRODUCTION

Cross entropy (CE) is one of the metrics widely used in
information theory where it measures the average number of
bits needed to identify an event drawn from the set when the
coding scheme used for the set is optimized for an estimated
probability distribution py instead of the true distribution p;.
It is also used in deep learning methods as a loss function
to be minimized. When dealing with model evaluation in
statistics, CE makes it possible to compare statistical models
by measuring the likelihood of the data under each model. The
lowest CE indicates a better fit to the data.

In information theory, the most popular CE between two
probability density functions (pdf) is the Shannon CE. A more
general form, the Rényi CE of order a, is defined using the
Rényi entropy and Rényi divergence. As « tends to 1, applying

L’Hospital rule makes it possible to recover the Shannon CE.
To study a dynamical system, with F' degrees of freedom,
observed every 0 seconds and characterized by a “phase
space” partitioned into a collection of boxes of size r, Kol-
mogorov—Sinai (KS) entropy was proposed and corresponds
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to the Shannon entropy rate, defined as the entropy per unit
time, when ¢ and r tend to 0. Approximations of KS entropy
in practical settings led to the approximate entropy [18] and
the sample entropy (SE) [20]. Therefore, it is not a surprise
if the cross-approximate entropy (CAE) [19] was proposed.
It is used to quantify asynchrony between two time series,
which refers to the extent to which the stochastic processes
exhibit coordinated behaviors. To improve the computational

cost, Skori¢ et al. proposed the binarized CAE [33], where
the binary encoding results from the value of the difference
between two consecutive samples of a signal. Then, the cross-
sample entropy (CSE) [20] between two stochastic processes
u and v of length N was defined as follows:

A" (v, 7)

CSE(u,v,m,r) = —In B (u,0,1)

M
with A+ (y, v, 7) and B"™ (u,v,r) the probabilities that u
and v match for m + 1 and m points, with a tolerance r.
CSE is known to be a measure of joint synchrony that is more
consistent than the CAE. A low CSE is obtained when the time
series are highly synchronized, whereas it becomes larger for
unsynchronized ones.

Then, variants were proposed such as the modified CSE [29],
the modified CSE based on symbolic representation and
similarity that is more robust to noise [26], the Kronecker-
Delta-based CSE [11], the refined CSE using the cumulative
histogram method [22] or the refined CSE based on Freedman-
Diaconis rule [3]. The concepts used to derive the permutation
entropy (PE) [1] and the fuzzy entropy (FE) [21] were also
applied to get the permutation CE [11], the joint PE [30] and
the cross FE [27].

Then, the multiscale extensions of some of the above measures
were proposed. The principle is inspired by the one used
for the multiscale sample entropy (MSE) [4]. It consists in
deriving different signals from the original one. Three main

approaches have been used:

1/ the data-driven” approach usually consists in applying
an empirical mode decomposition (EMD) or a variant [24] and
computing the measure with each intrinsic mode functions.
2/ the CG method was initially used to get robust information
of a dynamical system. It consists in mapping the signal
into symbol sequences. Different mapping strategies can be
considered, based on operators such as min, max, and average.
The average is commonly used for the multiscale entropy
measures. In that case, from the signal processing point of
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view, the CG approach based on averaging amounts to filtering
the signal by an averaging causal finite-impulse-response (FIR)
filter whose order is the scale s. The FIR is defined by
hcgt =1 fort=0,...,s—1, leading to the transfer function:

s—1
Heg(z) = é > o2 )
7=0

The filter output is then decimated by a factor equal to s. This
means that one sample out of s is kept.

Remark 1: a discrete fractional Gaussian noise (dfGn)! re-
mains a dfGn with the same Hurst exponent H after CG. If ¢
is the variance of the dfGn, the variance of the CG sequence
at scale s is equal to o522, This is the case of a white noise
with H = 0.5.

Remark 2: at each scale s, only the decimated signal starting
by the 1°¢ sample of the original signal and whose length
is equal to |Z |, where |.] is the floor function, is consid-
ered. However, in the composite multiscale procedure, the
decimated signals starting by the other s — 1 first samples
of the original signal are also considered. In that case, the
measures are calculated on the resulting s decimated sequences
and averaged [25].

3/ the time-shift (TS) procedure consists in directly decimat-
ing the original signal by a factor s. In that case, the resulting
s sequences, each one starting by one of the first s samples of
the original signal, are the results of the multiscale procedure.
Given the above concepts, the CSE was combined with the
CG to get the multiscale cross sample entropy (MSCE) [28].
To reduce the probability of undefined entropy especially for
short-duration signals, some variants were developed such as
the asymmetric multiscale cross-sample entropy that also takes
into account asymmetry [29], the composite multiscale cross-
sample entropy and a refined version [31]. However, other
combinations of a multiscale approach and a type of CE can
be derived. The reader can refer to the review paper written by
Jamin et al. [14]. Since then, the composite multiscale partial
CSE has been proposed to quantify the intrinsic similarity of
two time series linearly affected by a common external factor
[15]. In [12], the authors have derived a multiscale cross fuzzy
entropy. Finally, some authors recently suggested combining
the MSCE with the horizontal visibility graph mapping time
series to complex networks [16] [32].

The multiscale procedure makes it possible to create a set of
signals from a single one, thereby generating a set of markers
for signal classification. Consequently, these multiscale-based
measures have been applied in many applications: In finance
with time series in stock markets. In engineering to evaluate
coupling between sensors. In biomedical applications to an-
alyze the link between complexity, age and physical state of
a population by using handlebar angle and speed time series
recorded from a bike simulator [13] or to study the diagnosis
of epilepsy [16].

Numerous articles have been published on the use of signal
processing methods with real data, but their theoretical con-

1t H is the Hurst exponent, its normalized covariance function is defined
for k > 0 as 7, = %((k—i— 1)2H — 2k2H 4 (k — I)QH).

tributions often remained limited, and the explainability of
the results was frequently underdeveloped. To address this,
researchers have turned to synthetic stochastic processes such
as white noise, 1/f noise, and autoregressive (AR) or moving
average (MA) processes. Thus, the analytical expression of the
SE for a white noise was derived by Costa [4]. In addition,
the SE of a 1/f noise is a constant. In 2018, the analytical
expressions of the multiscale PE applied to a dfGn was derived
[5]. In 2019, using [2], the case of the 1°‘-order AR and
1°t-order MA processes were addressed [6].

Given all this context information, let us go back to Shannon
entropy and its rate which corresponds to the difference
between the measures computed for k£ + 1 and k variates
when k tends to infinity. It means that the measure can be
asymptotically seen as an affine function whose slope is the
rate. Recently, we suggested combining this rate with CG [10]
and analyzed the behaviour of the resulting multiscale entropy
rate for 1°*-order AR and 1°*-order MA processes as well as
dfGn. In this new paper, we propose to derive the multiscale
cross-entropy rate (MCER) by combining the cross-entropy
rate and a multiscale procedure based on CG or TS. Our
purpose is to identify some properties of ARMA processes
after the multiscale procedure and to study the MCER when
dealing with Gaussian ARMA processes. We will see that it
allows us to better understand the influences of the ARMA
parameters and the scale on the rates and that MCER can be
used to characterize stochastic process for classification.

The remainder of this paper is organized as follows: in sec-
tion II, we recall the main properties of the ARMA processes
and present some properties of the ARMA processes after the
multiscale procedure. In section III, we introduce the concept
of MCER by providing an analytical expression dealing with
Gaussian ARMA processes. Illustrations are then given.

II. ABOUT GAUSSIAN REAL ARMA PROCESSES

A. Definitions and properties

Let us define the t'" sample x; of a Gaussian zero-mean
(p, ) ARMA process:

P q
@ == 4w+ bju; ©)
i=1 i=0

where {a;};=1,..p, and {b;};=o0,... 4 respectively denote the AR
and MA parameters with by = 1. Moreover, the driving process
ug iS a zero-mean white Gaussian sequence with variance o2.
When the ARMA parameters and o2 do not vary over time,

the ARMA process is wide-sense stationary.

The ARMA process is also a source-filter process: given
(3), z: is the output of a linear filter whereas the input is
the driving process u; . The corresponding transfer function
is characterized by its g zeros {z }i=1,.,, and its p poles

{pl}l:l,.“,p:

N

4 (1 —zz?
H(z) = i Iz 220)
=1 (1-pz=1)
Poles with a modulus close to 1 create resonances in the
the power spectral density (PSD). In contrast, zeros generate

spectral rejections. When a zero has its modulus equal to 1,

“
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the PSD is null at the normalized angular frequency equal to
the argument of the zero.

The pdf of a vector storing k consecutive samples of the
ARMA process is characterized by its covariance matrix Q.
Q) 1s non singular even if the PSD is null at some frequencies.
However, the infinite-size Toeplitz covariance matrix is not
invertible if the transfer function has unit zeros.

Moreover, the elements of @ corresponds to a value of the
covariance function r, .. Given (3), it can be shown that r, .
depends on both the AR and the MA parameters when || < q.
Moreover, 7., for 7 > ¢+ 1 can be expressed as follows:

P
Te,r = — Z ATz, r—j (5)
j=1

Conversely if (5) is satisfied for 7 > ¢+ 1, the AR part can be
deduced as well as the order q.
Thus, for a real (2,2)ARMA process, by introducing
Bi=1—af—a3 B2 =1+ ay, and:
1+ b% + b% — 2a1b1 — 2a2ba — 2a1b1bs + 2a%b2
et 2
vy = 2a1a2(b1 + bibs — ale)
’ B1B2

one has for 7 > 3:

6)

2
2aiaz

B1B2

and v3 =1+

Y1+ Y2 ax b1 4+ biba —aibs o
o2 3 T+a; ° B2 M

2
Tg2 = —Q1Tz,1 — G2T¢,0 + 020y, Te,r = —A1T2,r—1 — Q272 r—2

Tx,0

yTa,1 =

Note that the covariance function of a real (1, 1) ARMA process
and a 1%%-order AR process can be easily deduced from (6)

by setting some ARMA parameters to 0.

When the moduli of the zeros are smaller than 1, the
ARMA process is called minimum-phase. Starting from
a non-minimum-phase ARMA process, the minimum-phase
ARMA process can be deduced by replacing the zeros
{zi}1=1,...,m<q outside the unit-circle in the z-plane by 1/z;
for I = 1,...,m to get the transfer function H,.:»(z). Then,
the variance of the driving process becomes:

|z1)? for the replaced zeros

q
2 2 i
Ou,min = Ou HKZ with K = { 1 otherwise

=1
®)
By using different methods such as the matrix determinant
lemma, we can show that:

el o2 ©

Considering a minimum-phase ARMA process is useful to
obtain the above limit of the ratio of the covariance matrices,
but also to define the inverse filter associated with a minimum-
phase ARMA filter. The latter defined by ;- H~'(z), whose
poles have their moduli smaller than 1, is necessarily stable.
Various approaches were proposed to estimate the ARMA
parameter: the Yule-Walker equations are often used to get
the AR parameters [17]. Inner-outer factorization can be
considered to estimate the MA parameters. The prediction
error method (PEM) is also often used to get the minimum-
phase ARMA process [23]. This method is known to be
asymptotically unbiased and efficient in the Gaussian case,
but its computational cost may be high.

k—+oco

B. Our 1t contribution: properties of ARMA processes after
a multiscale procedure at scale s

If the above properties are well known, let us now present
some properties of the ARMA processes after a multiscale
procedure at the scale s.

After the CG multiscale procedure with a factor s:

Let x, y and w be respectively the original signal, the filtered
one and the decimated filtered one at scale s. The determi-
nation of the orders of CG ARMA processes is not neces-
sarily obvious with the exception of ¢*"-order MA processes,
1°*-order AR processes or ARMA processes of order (1,q).
Given (2), (4), (5) and (6), we can conclude that:

1/ Let = be a ¢'-order MA process. y can be seen as
the output of the filtering of a white noise, whose transfer
function is Hee(2) x [[1, (1 — z:27"). So, it can be seen as a
g+ s — 1""-order MA process. Therefore, after decimation by
a factor s, w is a MA process of order |2t5=1]|

2/ Let x be an ARMA process of orders (Sl,q) , with ¢ > 0
and whose AR parameter is ai. y corresponds to an ARMA
process of order (1,¢ + s — 1), and whose AR parameter is

still a;. The proof is once again based on the expression of
q a1
the transfer function Heog(z) x My o2z )

FE—— ) of the equivalent
filter. Due to (5), its correlation function for a lag 7 > g+ s
hence satisfies:

(10)

Ty,r = —Q1Ty,7—1

After the decimation by a factor s, the correlation function 7, -
of the decimated filtered signal w is equal to r, s~. Therefore,
the following recurrence relation between r.,,r and 7, -1 18
obtained for > [2£2] + 1, with [.] the ceil function:

amn

This means that the (1,¢)ARMA process after the CG pro-
cedure is an ARMA process of order (1,[2f2]) whose AR
parameter is equal to —(—a1)®.

After the TS procedure with a factor s:

1/ A ¢*"-order MA process after a direct decimation by a factor
s becomes another MA process of order | £ |. Thus, when ¢ = 1
and for any s, one gets a white noise.

2/ Following the same above reasoning, an (1,¢q)ARMA pro-
cess after a decimation by a factor s leads to an ARMA process
of order (1,[2=1]) whose AR parameter is equal to —(—a1)®.

Tw,r = (_al)srw,‘rfl

III. MULTISCALE CROSS ENTROPY RATE

A. Expressions of the cross entropy, the entropy and the KL
divergence and their rates in the Gaussian case

Given k consecutive samples of two stochastic processes
characterized by their pdf, the cross entropy is defined as:

oM = - / p1(z1e) In(pa (1)) dar = HY + KL
(12)

where H,il) = — [pi(z1k) Inpi(z1.k)der,e 18 the Shannon
entropy, KL,?’Q) = [pi(z1x)In (%) dz. is the KL di-
vergence and z1., denotes the vector of k consecutive samples.
It inherently accounts for both the intrinsic randomness of the
first signal through its entropy and the mismatch between the

two pdf, as measured by the KL divergence.
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Let us now deduce their expressions for zero-mean Gaussian
processes. To this end, given the pdf of the i*" real random
Gaussian column vector x1.; of size £ and covariance matrix
Qk,; defined for s = 1,2 by:

pi(z1k) = 13)

L (- i)
(V2m)HQui] /2 PR

and after mathematical development similar to those presented
in [8], the entropy, the KL and the cross entropy become:

Hlil) = gln(27r) + % (ln (Q,:&Qk,l))
= 5(1+In(2m)) + %lﬂ\Qk 1
(1,2) 1 1 |Qk 1l (14)
KL L(Tr(Q; 3Qxa) — k —1n |)
HM = 1(kIn(2r) +Tr(Qk’2Qk.,1) +1n |Qk,2|)

Let us now ;))ress the increment of the cross entropy,
AH, (1,2) = H, (1 H, (12) a5 well as the increments of the
entropy and the KL Then let us look at their limits when &
tends to infinity. Given (14), one has:

AH"D = 1(1+mIn@2r) +1n lQ"“l‘ll)
AKL{ = 1P —1 -

In |Qkt1,111Qu, 2|) (15)
AHM = L(n@2r) + P +1n

Qk, 1|\Qk+1 2|
|Qr+1, 2\)
1Qk,2]

with PP = Te(Qp ! 5 Qrs11) — Tr(Qy Q1)
When £k tends to infinity, by using (9), one gets the rates:

AH®M = 1(1 4+ In(27) + lnaﬁ’mm’l)
AKL(LQ) — é(P(l’Q) 11’10-15 min, 1)
AH(L2> = %(hl(?ﬂ-) P<1 2) + 1n Uu min 2)

(16)

umzn2

where o7 ..., is the variance of the driving process of
the minimum-phase ARMA process associated with the "
process and P(1'?) is the power of the 1 process filtered by
the inverse filter associated with the 2"* ARMA process. This
is the limit of P\ when k tends to infinity [8]. The cross
entropy rate AH "2 depends on o2 .., » and the power P2,
The latter can be discriminative, but it may sometimes have
small values with respect to the other terms or may become
large if the 2"* ARMA process has a zero whose modulus

tends to 1 and that is not shared with the 1°* ARMA process.
Remark: Another expression could be considered based on
Szegd theorem. Indeed, one has:

lim In ‘?5:12 .l = %/ﬁ log Si,0d0 = 0 min.i
where S; o denotes the power spectral density (PSD) of the *"

process that could be estimated using a periodogram [7].

a7

B. Our 2nd contribution: multiscale cross entropy rate

Let us define the MCER (or multiscale profile) as a vector
of the CERs computed on the original signals and the ones
obtained by the multiscale procedure (CG or TS) up to the
maximum scale 7,4, selected by the practitioner. As recalled
in [9], the phenomenon of overlapping spectra generated
during the decimation step should not be a priori attractive as
it introduces aliasing In our case, this will be a way to create
diversity. Moreover, a zero on a unit circle (corresponding
to a null PSD at the normalized angular frequency equal to

the argument of the zero) should disappear at a certain scale
due the spectrum overlapping, meaning that the resulting cross
entropy rate would be finite.

C. Illustrations

AHM?(s) and PM?(s) respectively denote the cross en-
tropy rate and the power of the 1%¢ process filtered by the
inverse filter associated with the 2"? ARMA process at scale
s. Note that AH®? (1) = AH®? and P12 (1) = PO,

1) Toy example: two white noises with variance o2 1 and
o’u 27 When usmg the TS multiscale procedure, as the noise
variances remain unchanged and correspond to the minimum-
phase case, one gets the following rates:

AHW (5) = (1 +1n(27r) +lnau 1) =AH®
(1,2) (4 u u _ (1,2)
AH®?) (5) = %(1n(27r) + GZI + ln 03’2) =AH®?
ug
whereas the CG multiscale procedure leads to:
0_2
AHW(s) =11+ In(27) + In wl) = AHWM — Ins
o2 02
AKLM?(s) = 3 (52 —1—In2pt) = AKL™H?
ug ) Tu,2 R
AH®?(s) = 3 (In(27) + T3 +1In 722) = AH®) — los
u,2
19

Therefore, the multiscale procedure does not bring in much.

2) Illustration with two 1%'-order AR processes: In this
example, the AR processes are defined by their AR parameter
a1,; and driving-process variance Ui,i , with 7 = 1,2. Given
section II. B, let us first give some comments.

After the TS multiscale procedure with a factor s:

Both 1°*-order AR processes remain 1°‘-order AR processes,
but the AR parameters are now equal to —(—a1,;)° , with ¢ =
1,2. The pole modulus decreases with s. When a; ; is positive,
the decimated process exhibits a pick either in low or in a high
frequency depending on s. The variance of the driving process
can be easily deduced from (6) with az; = b1, =02, =0. It

The latter increases with s.

is equal to 2 ‘au i

Moreover, at eaeh scale s, (6) can be used to get the power

P12 (s). It corresponds to the correlation function for a lag

7 = 0 when considering a (1,1) ARMA process defined by its

AR parameter —(—aq,1)°, its MA parameter —(—a1,2)® and its
at, 5 1- “1 2 Tu,1

1—
driving-process variance =y 1mady oF

Nevertheless, using (6), it can be shown that P(*?)(s) and
consequently the cross entropy rate associated with the set of
AR processes defined by a1,1 and a1,> and the cross entropy
rate of the set of AR processes defined by —a1,: and —a1 2
are the same for any scale s. The resulting MCER profiles are
hence the same in that case.

After the CG multiscale procedure with a factor s:

Both 1%*-order AR processes become (1,1)ARMA processes.
At each scale s, the power P2 (s) corresponds to the corre-
lation function for a lag 7 = 0 when considering a (2,2) ARMA
process. Its expression is given in (6) but requires the values
of the ARMA parameters. Due to the low-pass filtering in the
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CQG, the issue in the TS multiscale procedure (where the cross-
entropy rate was identical for the sets of AR processes defined
by a1,1 and a1,2 , and by —aq,1 and —aq,2 ) is now fixed.

Let us now provide 4 examples of the MCER profile with CG
when N = 15000 samples of each AR process are available.
oo, = 0., = 100. The PEM approach [23] is used to
estimate the model parameters at each scale s. P12 (s) is
then computed by using (6) with the estimated parameters. It
should be noted that at each scale s, P(*?)(s) could be also
estimated by first applying the inverse filtering defined with
the estimated parameters obtained with the PEM method and
then estimating the filter-output power. This can be the method
used in practice for any process.

Each column in Table I defines the MCER averaged on 100
realizations of both AR processes. In theory, AH 12 (1) should
be equal to 6.8465 for cases 1 and 3, and equal to 5.9274 for
cases 2 and 4. As shown in Table I, in practice, using the other
scales makes it possible to differentiate the cases.

Scale Case 1 Case 2 Case 3 Case 4
S a1,1 = 0.7 a1’1 = —0.8 a1,1 = —0.7 a1,1 =0.8
a2 = —0.8 a2 =0.7 a2 =0.8 ay2 = —0.7
1 6.84(£0.23) 5.94(£0.09) 6.79(£0.29) | 5.90(%0.21)
2 3.65(£0.01) 6.46(£0.12) 5.62(£0.07) | 3.49(£0.01)
3 3.60(£0.01) | 10.34(40.36) | 8.81(%0.31) | 3.53(+0.01)
4 3.49(£0.01) | 11.40(£0.44) | 8.04(£0.22) | 3.34(%0.01)

TABLE T
AVERAGE VALUES OF THE CER, AH(1:2) (5), AT EACH SCALE

The MCER based on a CG procedure is more relevant than
the MCER based on time-shift multiscale procedure.

IV. CONCLUSIONS AND PERSPECTIVES

The multiscale cross-entropy rate is an alternative to the
existing multiscale cross-entropies. Its applications to ARMA
processes has the advantage of better understanding what the
multiscale procedure can bring because analytical expressions
can be derived. As a perspective, we plan to compare it with
the other existing multiscale cross-entropies, address the non
Gaussian case and use it with real biosignals.
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