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Abstract—Many real-world systems generate multivariate time
series data, often exhibiting self-similarity and scale-invariance
across different modalities. The estimation of Hurst exponents
in such settings is crucial for analyzing long-range dependencies.
Yet, traditional eigenanalysis-based methods suffer from scale-
dependent distortions, particularly in the presence of scaling
amplitude discrepancies. In this work, we propose a novel multi-
scale eigenanalysis approach that leverages joint diagonalization
of wavelet random matrices to improve estimation accuracy. By
approximating a common eigenvector basis across multiple scales,
our method mitigates the limitations of scale-wise eigenvalue
regressions and provides robust estimation of multivariate self-
similarity parameters. We demonstrate the effectiveness of our
approach through extensive Monte Carlo simulations, showcasing
improved performance over traditional methods in both orthogo-
nal and non-orthogonal mixing scenarios. These findings establish
joint eigenvector-based wavelet analysis as a powerful tool for
multivariate self-similarity estimation.

Index Terms—multivariate self-similarity, Hurst exponent, ran-
dom matrices, joint diagonalization, wavelets

I. INTRODUCTION

Context: scale invariance. Scale invariance is a fundamental
property encountered in a wide range of signals from various
fields, including physics and engineering [1], [2]. A signal
X is called scale-invariant, or fractal, when its temporal dy-
namics lack a characteristic scale. Unlike traditional statistical
mechanics, where modeling typically focuses on fixed scales,
scale-invariant signals are described using scaling exponents,
which relate the behavior of the system across multiple
scales. A cornerstone model for scale invariance, based on
the functional central limit theorem, is fractional Brownian
motion (fBm) [3]. FBm is the only Gaussian, stationary-
increment, self-similar process. The latter property means that
its finite-dimensional distributions (f.d.d.) are scale-invariant,
ie., {Bu(t)}ier fdd {a" By (t/a)}1er, where a > 0 and the
scaling exponent 0 < H < 1 is known as the Hurst parameter.
Estimating H plays a crucial role in various signal processing
tasks such as diagnosis, classification, and detection. The
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wavelet transform provides a robust analytical framework for
many well-established methods of estimating H [4].
Multivariate self-similarity. While most applications have
relied on the univariate fBm model, the increasing prevalence
of large-scale data collected from multiple sensors has led to
the need for modeling multivariate self-similarity. For instance,
in neuroscience, macroscopic brain activity time series can
range from hundreds (e.g., MEG data) to tens of thousands
(e.g., fMRI data) [2]. In econometrics, detecting scaling laws
in multivariate fractional time series is crucial for identifying
meaningful long-run relationships, such as cointegration [5].
In these complex data sets, the presence of multiple scaling
laws — i.e., distinct Hurst exponents — implies distinct large-
scale behavior along possibly non-canonical coordinate axes.
Ignoring the interplay of these distinct scaling laws may lead
to arbitrarily large estimation biases [6], [7].

Eigenanalysis of wavelet random matrices. Random matri-
ces have emerged as a key analytical tool in both mathematical
physics [8] and high-dimensional statistics and machine learn-
ing [9]. In particular, wavelet random matrices (WRMs) offer
an asymptotically universal and robust framework for studying
multivariate and high-dimensional stochastic dynamics over
large scales. For many (Gaussian or non-Gaussian) multivari-
ate fractal systems, the multiple scaling laws hidden in the
data eventually emerge as power laws in the eigenspectrum
of WRMs, driven by the Hurst exponents. To the best of our
knowledge, WRMs were first introduced and studied by the
authors and collaborators in a series of papers [10], [11].
Challenge: incongruent scaling amplitudes. Despite their
strong asymptotic properties, WRM-based eigenanalysis faces
challenges when working with finite samples. A key issue
is the potential for large discrepancies in the magnitudes of
scaling amplitudes. After log-linearization in the eigendomain,
this can lead to affine scaling laws that cross over, resulting
in biased slope (Hurst exponent) estimators. Inspired by blind
source separation problems [12], one potential solution for
systems with instantaneous correlations is to jointly diagonal-
ize WRMs from two different scales exactly, and estimate the
mixing matrix that “scrambles” the multiple power laws [13].
While this method has shown good performance for several
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instances of scaling systems, it is limited by relying on
only two scales of analysis, which may result in poor Hurst
exponent estimates, especially when scaling laws cross over.
Goals and contributions. The main goal of this work is
to propose an efficient estimation method for instantaneously
correlated, multivariate self-similar systems that addresses the
crossover phenomenon. We review the operator fractional
Brownian motion (ofBm) model of multivariate self-similarity
in Section II, and recap the wavelet eigenvalue-based method-
ology for estimating the M Hurst exponents of ofBm. We
also summarize the asymptotic theory for WRM eigenvectors
developed in [10], which has been largely unexplored for
inferential purposes. In Section III, we present as our first
main contribution a novel estimation procedure for the vector
of Hurst exponents based on WRM diagonalization across
multiple scales, leveraging a recently proposed algorithm [14].
This method introduces a completely new approach within the
framework of WRMs. In Section IV, we provide as a second
contribution an extensive numerical study of the finite-sample
performance of the proposed method, demonstrating its effi-
ciency for realistic sample sizes and significant improvement
over standard eigenanalysis-based methods [6]. Finally, in
Section V, we conclude with a discussion of the implications
of our work and potential future research directions.

II. MULTIVARIATE SELF-SIMILARITY
A. Canonical model

Operator fractional Brownian motion (ofBm) is a canonical
model for multidimensional scale-invariant structures in real-
world data. We briefly recall its definition and some properties
[15]. Let By s(t) = (Bm,(t),...,Bmu, (1)), denote a
collection of M possibly correlated fBm components defined
by their individual Hurst exponents H = (Hy,...,Hy),
0 < Hy <...< Hp <1 Let ¥ be a pointwise covariance
matrix with entries (X)g ¢ = o¢00 pe s, Where 03 are the
variances of the components and p, ¢ their (pairwise) correla-
tion coefficients. OfBm is defined as the Gaussian, stationary-
increment stochastic process Bp g »2(t) = PBy »(t), where
P is a real-valued, M x M invertible matrix that mixes together
the components (changes the scaling coordinates) of By x(t).
Moreover, it satisfies the (operator) self-similarity relation

fd.d.

{Bpus(t)er = {aHﬁpﬂz(t/a))}teRv (1

Ya > 0. In (1), the matrix Hurst exponent is given by
H = Pdiag(H)P~", and o™ = 32 log" (a)H* /k!. When
the demixed process P~'Bp y 51(t) = By »(t) has uncorre-
lated entries, (1) is instantaneoﬂsly correlated. Below, we only
consider instantaneously correlated instances of ofBm (X =1).

B. Wavelet analysis of ofBm

Multivariate = wavelet transform. Let ¢ be a
mother wavelet, i.e., a real-valued function such that
Jg¥?(t)dt = 1. For all k,j € N, the multivariate
discrete wavelet transform of {Bp g 5(t)}ier is defined
as D(29,k) = (D1(27,k),...,Dn(27,K)), where
D2, k) = (27979277t — k) Bppys.t) € R

for ¢ € {1,...,M}. For a detailed introduction to
wavelet transforms, see [16]. It can be shown that the
wavelet coefficients {D(27,k)}rez satisfy, for every
fixed octave j, the operator self-similarity relation
{D(2, k)b en & {20 E+ED D(1, k) ben [6], [7).

Eigenanalysis. Starting from the measurements (1), the

wavelet random matrix (WRM) at octave j € (j1,...,J2) is
given by the M x M symmetric matrices
_ 1 W _ .
S(27) = —Y D, kD2, k)", )
" =1

where n is the time series (sample) size and n; ~ n/27 is
the number of wavelet coefficients available at scale 27. It
was shown in [6], [7] that, in general, estimation based on the
entrywise multiscale behavior of S(27) is arbitrarily biased.
So, let A1(27),...,Ax(27) be the eigenvalues of the ran-
dom matrix S(27) as in (2). Notably, it was shown in [6], [7]
that, in the large-sample and large-scale limits n, j — oo,

A (27) & £, - 212,

for scaling amplitude constants &,, > 0. Consequently, the
vector of Hurst exponents H can be efficiently estimated as
follows. Consider the eigen-decompositions of the random
matrices (2), i.e.,

S@2) =U;ANUT, G E (G, o) 3)

In (3), A(27) = diag(\,(27), ..., A\as(27)) displays the eigen-
values of S(27) along the main diagonal. Also, the orthogonal
matrix U; € RM*M contains the eigenvectors u,, ,(27),
m=1,...,M, of S (27) as columns. The wavelet estimator
(Hy,..., Hpp) for H is defined as log-eigenvalue regressions

J2
ﬁm:% > wjlogy A, (2) =1, m=1,...,M, (4
J=J1
where the Weights.wj satisfy .Zj jwj = 1 and Zj w; =0
(cf. [4]). Under mild assumptions, it was shown in [6], [7]
that (I/i\'l,...7ﬁIM) 5 (Hy,...,Hpy) as n,j — oo, with
asymptotically Gaussian fluctuations.
Eigenvectors. In [10], the asymptotic behavior of wavelet
eigenvectors is further characterized. Suppose the Hurst ex-
ponents in (1) are pairwise distinct. Recast the mixing matrix
P = (Py,...,Py) from (1) in terms of its column vectors. In
the easily interpretable case where the matrix P is orthogonal,
the eigenvectors of (3) asymptotically align with the columns
of P, up to a sign. Specifically, we have
. . J _ 1

jpin - in | (20), Pr)| =10 (m) ©)
as n,j — 00. In (5), 5]-[ = minlgm<m’§]\4 (Hm/ — Hm) and
Op means bounded in probability.

In the general case where P is not orthogonal, let us set
M = 3 for the sake of expositional clarity and fix any j.
Then, as n, j — oo, and at the same convergence rate as in (5),
up to a sign, the top eigenvector us ,(27) and P eventually
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align (cf. (5)), and the next eigenvector us,,(27) approaches
span{ Py, P3} and converges. Consequently, the remaining
eigenvector u; ,(27) is pushed away from span{P», P3} and
eventually converges. The case for general M can be induc-
tively inferred from this description. Since, for any fixed m,
the eigenvectors W, ,(27), for j € (ji,...,J2), exhibit the
same asymptotic behavior, the WRMs in (3) for a range of
large scales can be approximately jointly diagonalized by the
eigenvectors u,, ,,(27°), for m = 1,..., M, for any large jo.

III. MULTISCALE EIGENVECTOR BASED ESTIMATOR
A. Approximate joint eigenanalysis of ofBm

In this section, we introduce a new estimator for
(Huq,...,Hyr), building on the fact that the eigenvectors U;
of S(27) converge to a common limiting matrix U. In a finite-
sample setting, instead of scale-wise wavelet eigenanalysis as
in (3), our key idea is to jointly diagonalize the set of matrices

S ={S(2"),...,5(27)} (6)

approximately, using a single nonsingular matrix U. This leads
to the approximate factorization:

S(27) =~ UA(2))UT, o), (7)

where A(27) is an approximately diagonal matrix whose
diagonal entries correspond to the approximate eigenvalues

(A (29),. ., A (29) = (A (29), .., Apar(29)). (8)

To construct the wavelet estimator (Hi,...,Hys) for
(Hy, ..., Hyr), we replace the scale-wise eigenvalues )y, (27)
in (4) with their approximations \,,(27).

jE(Jl,...

B. Motivation for Joint Diagonalization

In light of the assumption that 27t /n = o(1) [10], relation
(5) demonstrates that the convergence of the M eigenvectors
to an orthogonal matrix U is generally much slower than the
growth of n. As a result, U as in (7) may not be a close
approximation of U. Yet, we can reasonably assume that the
eigenvectors U; at different scales, j € (Ji, ..., Ja), satisfy

Uj~U, evenifU #U. 9)

This assumption provides a key advantage: the approximate
diagonalization in (7) preserves the ordering of eigenvalues
across scales by associating them with shared approximate
eigenvectors. In contrast, the usual scale-wise approach (3) or-
ders the eigenvalues at each scale independently by magnitude.
This can lead to inconsistent eigenvalue ordering across scales,
causing permutations known as crossover that introduce biases
when used in (4). This is illustrated in Fig. 1 (top row).

C. Joint Diagonalization of WRMs

Joint diagonalization as an optimization problem. A
key remaining step is to identify a suitable approximate
diagonalizer U. The problem of jointly diagonalizing a set of
matrices has been extensively studied, and several algorithms
have been proposed for its solution [17]-[19]. Most commonly,
these methods formalize (7) by defining U as the minimizer
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Fig. 1. Log-scale plots for orthogonal mixing matrix and distinct H.
idEV (top) and JEV (bottom) for (from left to right) M = 2,3,6. Rms
values are averaged over components and obtained for the indicated scaling
range optimal for idEV and (51, j2) = (2,12) for JEV, respectively.

of a functional fs(U), defined for nonsingular matrices U and
penalizing the magnitude of the off-diagonal elements in the
approximately diagonalized matrices A(27) = U~15(2/)U
This leads to the optimization problem

U = argminy fs(U), f Z P

J J1 i#j

U1S(20)0),]°

(10)
This objective function is highly non-convex and has been
studied in detail in [20], where explicit and efficient expres-
sions for its gradient, V fs|y, and Hessian operator, Hg|y(Z),
have been derived. These expressions allow for effective
numerical optimization. A recent method proposed in [14] em-
ploys a conjugate gradient (CG) algorithm with a multiplica-
tive change of basis to solve (10). This approach significantly
outperforms previous algorithms in terms of accuracy.
Special Case: Unitary Joint Diagonalization. Since the
matrices S(27) are symmetric, we impose the constraint that
U be an orthogonal matrix, i.e., U~! = U”T. To adapt the
algorithm from [14] to this special case, we enforce the unitary
constraint by projecting onto the set of orthogonal matrices at
each iteration. This projection is performed using the singular
value decomposition (SVD): given any matrix A, the closest
unitary matrix B is given by B = VW7, where VW7 is
the SVD of A [20], [21]. This projection step ensures that U
remains unitary throughout the optimization process.
Conjugate Gradient Algorithm for Estimating U/. The
CG algorithm adapted from [14] for estimating U consists of
the following steps:
Initialization (i = 0): Set Sg = S and Uy = Ujpit-
Compute the initial search direction Ry = —V fs, |7 and
perform steps 3 to 7 (gradient descent step).
1) Set Ri,1 = (I + )\iflRifl)_lRifl giVCIl Rifl, S
2) Compute the gradient Vfs,|; and update the search
direction using Daniel’s rule for nonlinear conjugate

gradient, R; = —Vfs,|1 + Bi— 1Rz 1, where 3,1 =
(Vfs,|r,Hs,; |1 (Ri—1)) [22].
<R7, 17HSI|I(RZ 1))
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3) Compute the Newton step-size \; = —%.
4) Compute the SVD (I + \;R;) = V;SWT
5) Update the matrix set S; 1 = (V,W)TS;(V,WT).
6) Update the eigenvector estimate U; ;1 = U;(V;WT).
7) If not converged, set ¢ = ¢ + 1 and go back to 1).

IV. NUMERICAL RESULTS

Monte Carlo Simulation. We apply the log-regression esti-
mator (4) using both the scale-wise eigenanalysis (3) and the
proposed approximate multiscale eigenanalysis (8), denoted
idEV and JEV, respectively. These methods are evaluated over
a large number of realizations, Ny;c = 100, of an ofBm
process with n = 216 and M = 2,3, 6, 32. For better visibility
in log-log plots and without loss of generality, we analyze the
increment process of ofBm. The mixing matrix P = P, is
constructed as an orthonormal matrix drawn at random and
modified such that the last column forms an angle « with the
second-to-last column while remaining orthogonal to all other
columns. Specifically, when o = 90°, P, remains fully or-
thonormal, whereas for @ — 0°, it degenerates to rank M — 1.
For the analysis, we employ a Daubechies wavelet with two
vanishing moments. For idEV, a case-wise optimal set of scales
(j1, j2) is selected. For JEV, unless stated otherwise, the scales
are fixed at (j1,72) = (2,12) and (J1, J2) = (2,12). The CG
algorithm from Sec. III-C is executed for 100 iterations using
normalized matrices S(27) = S(27)/||S(27)]|. The initializa-
tion is set as U;,;; = eig (Zfzh 3(2j)). Performance is
quantified using the mean, standard deviation (std), and root
mean squared error (rms) over all realizations.

Performance for orthogonal mixing matrices. Fig. 1
presents average log-log plots for A(27) (idEV, top) and A\(27)
(JEV, bottom) for M = 2, 3,6, where the mixing matrix P
is orthogonal (o = 90°) and all values of H are distinct. In
this case, the eigenvectors U; asymptotically align with P.
Clearly, idEV exhibits scaling laws with crossovers, leading
to poor estimates for H with large rms values when all scales
are used in (4). While this issue can be mitigated by selecting
a larger value for j; (with the optimal value highlighted in
bold in Fig. 1), the challenge becomes increasingly difficult
as the number of components M grows. In such cases,
multiple crossovers may occur, often requiring manual inspec-
tion that is tedious, error-prone, and difficult to automate.
In contrast, our proposed JEV method effectively resolves
the crossover issue and produces nearly perfect scaling laws.
Consequently, almost all scales can be used for estimating
H, significantly improving overall performance (in terms of
rms values) without requiring manual tuning of (jq, j2). Tab. I
further details the performance in terms of mean, standard
deviation (std), and rms for each H individually. Unlike idEV,
which relies on manually tuned scales (j1, j2), JEV, with fixed
(j1,J2) = (2,12), provides nearly bias-free estimates and
outperforms idEV by a factor of 2 to 5 in rms values.
Robustness to identical H (6 = 0). Fig. 2 (dEV (left),
JEV with J; = 2 (center) and J; = 3 (right), respectively)
presents results for M/ = 6 with an orthogonal mixing matrix

M =2 M=3 M =6
H idEV|{|0.6 {0.9 ||0.6 |0.8 |0.9 ||0.2 0.4 [0.6 (0.7 |0.8 |0.9
mean 0.59(0.89]0.57|0.78|0.90|(0.13]|0.35|0.56|0.70|0.80|0.86
std 2.99(2.86((4.22|4.74|4.13||3.64|4.48|5.32|4.40|5.54|4.57
rms 3.19(3.03]5.38|5.29|4.16|8.23|6.81|6.69|4.42|5.56|6.29
mean 0.60(0.90(/0.59|0.80/0.90|0.18|0.39|0.61|0.70|0.80|0.89
std 1.64|1.62{{1.49|1.72|1.51||1.54|1.66(6.48|1.40|1.64|6.35
rms 1.66|1.63||1.58|1.74|1.51|]|2.72|1.89(6.53|1.41|1.65|6.45

ABLE T
Performance for orthogonal mixing matrix and distinct /. MEAN, STD
AND RMS FOR IDEV (TOP) AND JEV (BOTTOM) FOR M = 2,3,6 (FROM
LEFT TO RIGHT), OBTAINED WITH OPTIMAL (FOR OVERALL RMS) SCALES
(j1,72) FOR IDEV (GIVEN IN FIG. 1) AND (j1,j2) = (2,12) FOR JEV,
RESPECTIVELY. BEST RESULTS MARKED IN COLOR.

idEV JEV (J=2-12 JEV (J=3-12
10 1 M=6 10 frms ( =o.zo) 10 frms ( =o.o13
H=[0.2,0.4,0.6,0.6,0.8,0.9] rms 2120198 rms #12)= 0,05
061 (7,12) *X (7,12)
5 ¥

e
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i a= =90
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=90
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Fig. 2. Log-scale plots for orthogonal mixing matrix and identical H.
idEV (left) and JEV with J; = 2 (center) and J; = 3 (right). Rms values
are averaged over components and obtained for the indicated scaling range
optimal for idEV and (j1,j2) = (2, 12) for JEV, respectively.

in the extreme case where two Hurst exponents are identical,
and convergence of eigenvectors is not guaranteed (cf. (5)).
For idEV, the results are similar to those observed for M = 6
previously. More interestingly, the center plot illustrates that
JEV can indeed fail when exponents are identical, as predicted
by (5). However, the plot on the right demonstrates that this
issue can be effectively mitigated by selecting a larger scale
for Ji, thereby restoring excellent estimation performance.
Robustness to non-orthogonal mixing matrices. Fig. 3
presents average log-log plots for A(27) (idEV, left) and A\(27)
(JEV, center) for M =3 across multiple instances of mixing
matrices P, with o =61°42° 23°. Similar to the orthogonal
mixing case (o = 90°), scaling laws for idEV are significantly
affected for all three mixing matrices, leading to poor estimates
for H and nearly identical rms values. For JEV, performance
remains comparable to the orthogonal case for the two smaller
modes (H = 0.6,0.8) as « decreases. However, estimation for
the largest mode (H = 0.9) deteriorates, requiring the use of
large scales in (4). Moreover, for «=42° and av=23°, setting
J1 = 10 is required to obtain accurate results, indicating
that the eigenvector uy(27) varies significantly across scales.
Eventually, for a=23°, the log-eigenvalues for JEV associated
with H = 0.8,0.9 collapse with those for idEV. However,
the JEV log-eigenvalues for H = 0.6 scale nearly perfectly
across all scales. This behavior is further examined in Tab. II,
which summarizes JEV performance as « and J; vary. The
results indicate that .J; must be increased as « decreases. The
performance for the largest modes (H = 0.8,0.9) eventually
deteriorates. Remarkably, estimation for the smallest mode
(H = 0.6) remains nearly as accurate as in the orthogonal
case, regardless of the precise value of a.

2620



idEV JEV (J=2-12)

8 8 8
6 1MMS 5 1) MMS ;1o 6 M5 15 MS (7 o) ** 6
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Fig. 3. Log-scale plots for non-orthogonal mixing matrix and distiinct
H: idEV (left), JEV (center) and overlay (right) for mixing matrix W, with
a = 61°,42°,23° (from top to bottom); rms values are given for each
H separately, with optimal (for overall rms) scales (j1,j2) for idEV and
(41, 742) = (2,12) for JEV, respectively.

mean
H=0.6 H=0.8 H=0.9
J1 2 6 10 2 6 10 2 6 10
a=611[0.60]|0.61]0.60 || 0.80|0.80|0.80 || 0.86 | 0.86 | 0.87
a=421[0.69]|0.62|0.60 [[0.79]0.78 | 0.79 || 0.83 | 0.84 | 0.84
a=231[0.70]0.63]0.60 [[0.79]0.77 | 0.77 [{ 0.84 | 0.84 | 0.84
std x102
2 6 10 2 6 10 2 6 10
a=611.17]1.13|1.14 ([ 1.19|1.18 | 1.22 || 1.62 | 1.60 | 1.66
a=421.30|1.18|1.17 || 2.51 | 0.99 | 0.98 || 2.64 | 2.68 | 2.71
a=23/1.08|1.15|1.18 || 3.25|1.08 | 1.07 || 3.71 | 3.82 | 3.89
rms x102
2 6 10 2 6 10 2 6 10
a=611.18|1.24|1.14[1.25[1.24|1.32([ 3.89|4.37| 3.84
a=421[873]2.43[1.20([2.79(2.12|1.50 (| 7.85|7.03 | 6.54
a=231[9.65]2.83]1.23(/3.33(3.12|2.88(/6.90|6.83|6.76
ABLE 1T

Performance for nonorthogonal mixing matrix: ESTIMATION FOR H FOR
JEV WITH OPTIMAL (FOR OVERALL RMS) SCALES (j1, j2) SELECTED FOR
EACH H INDIVIDUALLY, RESPECTIVELY, AND DIFFERENT VALUES FOR J7.

Overall, these findings demonstrate that the proposed JEV
method offers significant advantages over idEV not only for
orthogonal mixing matrices but also under more challenging
scenarios, ensuring robust and improved performance.

V. CONCLUSIONS

In this work, we introduced a novel multiscale eigenanal-
ysis approach for estimating Hurst exponents in multivariate
self-similar processes. By leveraging joint diagonalization of
wavelet random matrices, our method overcomes limitations
of traditional scale-wise eigenanalysis, particularly in the
presence of scaling amplitude discrepancies. This approach
provides a robust estimation framework that preserves eigen-

value ordering across scales, reducing estimation biases caused
by crossover effects. Through extensive Monte Carlo simula-
tions, we demonstrated the superiority of our method in both
orthogonal and non-orthogonal mixing scenarios. Our findings
highlight the potential of joint eigenvector-based wavelet anal-
ysis as a powerful tool for analyzing self-similar dynamics in
multivariate time series. Future research includes extending
this methodology to broader classes of mixing matrices and
to non-instantaneous correlations, as well as studying its
applicability to real-world datasets in neuroscience.
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