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Abstract—The reassignment technique is used to increase
localization for signal components in the time-frequency repre-
sentation. The technique gives perfect localization for linear chirp
signals and constant frequency signals. Despite the recent interest
in using the reassignment technique to determine phase-shifts,
no general expression of cross-spectrogram reassignment vectors
exists. This submission aims to give proof of the generalization
of the reassignment vectors to the reassigned cross-spectrogram.
The benefit of reassignment for determining phase shift between
simulated signals will be illustrated. We exemplify with the
reassigned cross-spectrogram of a respiratory frequency and a
heart rate variability signal.

Index Terms—time-frequency, reassignment, instantaneous fre-
quency, phase shift, multi-component

I. INTRODUCTION

The time-frequency (TF) reassignment and synchrosqueez-
ing techniques are modern examples of representations that ex-
ploit the phase information usually discarded in the quadratic
TF class. The reassigned spectrogram was first introduced in
1976 [1], and computationally efficient spectrogram reassign-
ment vectors were introduced in 1995 [2]. In principle, the re-
assignment technique is a nonlinear transformation that moves
TF mass in the spectrogram to improve signal localization.
Importantly, the reassignment vectors can be interpreted as TF-
local measures of the group delay and instantaneous frequency
of the signal.

Over the past two decades, many more reassignment tech-
niques have been suggested to overcome some of the limita-
tions of reassignment, such as noise sensitivity and non-linear
chirp and transient localization. Some notable mentions are,
recursive versions of the reassigned spectrogram and scalo-
gram [3], the adjustable Levenberg-Marquardt reassignment
[4], reassignment including second-order phase-derivatives [5],
scaled reassignment for transient signals [6], matched window
reassignment [7], and noise-robust multitaper reassignment
techniques. Similar to reassignment, synchrosqueezing is a
nonlinear transformation of linear TF representations [8]. As
such, it has become a popular tool for mode decomposition,
[9], [10].

Phase shifts between signals are of interest in many fields,
including direction of arrival estimation, source separation, and
spatiotemporal decoding in neurology and soundscape analy-
sis. The phase is often extracted from the short-time Fourier
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transform or the cross-spectrogram. Other methods are based
on bandpass-filtered signals and the Hilbert transform, which
involves normalization of the signal by its own envelope. This
procedure is well known to introduce spectral leakage and
large errors into the phase measure [11].

To remedy this problem, we have suggested various reas-
signment methods based on the cross-spectrogram for deter-
mining phase shifts between transient signals [12], [13]. An-
other reassignment technique based on the cross-S-transform
has been used for dispersion analysis of seismic waves
[14]. The reassignment technique has also been applied for
frequency-domain beamforming and cross-correlation estima-
tion [15]. Phase estimation is also performed for speech signals
by using filterbanks in combination with reassignment and
synchrosqueezing techniques [16]. Despite the recent interest
in using the reassignment technique to determine phase-shifts,
no general expression of the cross-spectrogram reassignment
vectors exists.

The contributions of this paper are threefold. First, we cal-
culate the reassigned cross-spectrogram and give proof of the
corresponding reassignment vectors. Second, we investigate
the relation between the reassignment vectors and the short-
time Fourier transform (STFT) phase. Lastly, we exemplify
how the reassigned cross-spectrogram can be used to deter-
mine phase-shifts between frequency-modulated signals.

II. THE REASSIGNED CROSS-SPECTROGRAM

In correspondence with the ordinary reassigned spectro-
gram, we define the reassigned cross-spectrogram as

RSh
xy(t, ω) =∫∫
Sh
xy(τ, ν)δ(t− t̂xy(τ, ν), ω − ω̂xy(τ, ν))dτdν (1)

where x(t) and y(t) are two signals. All integrals run from
−∞ to ∞, and this is the case for all integrals in this work,
unless something else is specified. The cross-spectrogram is
most often complex-valued and is defined as

Sh
xy(t, ω) = Fh

x (t, ω)F
h

y(t, ω) (2)

where F denotes complex conjugate and

Fh
x (t, ω) =

∫
x(u)h(t− u)e−iωudu (3)
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is the short-time Fourier transform (STFT) of the signal x
using the window h. The purpose of the reassignment vectors
t̂xy(τ, ν) and ω̂xy(τ, ν) is to move the energy of the cross-
spectrogram Sxy(t, ω) to the gravitational center.

We define the reassignment vectors for the cross-quadratic
class as

t̂xy(t, ω) = t−
∫∫

uϕ(u, ν)Wxy(t− u, ω − ν)du dν
2π∫∫

ϕ(u, ν)Wxy(t− u, ω − ν)du dν
2π

(4)

and

ω̂xy(t, ω) = ω −
∫∫

νϕ(u, ν)Wxy(t− u, ω − ν)du dν
2π∫∫

ϕ(u, ν)Wxy(t− u, ω − ν)du dν
2π

(5)

where the cross-Wigner-Ville distribution is defined as

Wxy(t, ω) =

∫
x
(
t+

τ

2

)
y
(
t− τ

2

)
e−iωτdτ. (6)

The cross-Wigner-Ville distribution simplifies to the regular
version if the two signals are the same. Similarly, the cross-
quadratic class is defined as

WQ
xy(t, ω) =

∫∫
ϕ(u, ν)Wxy(t− u, ω − ν)du

dν
2π

, (7)

where ϕ(u, ν) is the smoothing kernel. Again, it can be noted
that, if the two signals are the same, the cross-quadratic class
simplifies to the standard quadratic class.

Unfortunately, these expressions are not very useful for the
cross-spectrogram since they require a lot of computing power.
We want to find easy-to-compute expressions for the cross-
spectrogram, using the STFT of signals and windows.

A. The cross-spectrogram

The cross-spectrogram belongs to the cross-quadratic class
which can be seen from the following lemma.

Lemma 1. Given two signals x and y, and two windows g
and h

F g
x (t, ω)F

h

y(t, ω) =∫∫
Wgh(u, ν)Wxy(t− u, ω − ν)du

dν
2π

(8)

Proof is found in Appendix. From Lemma 1 it follows that
the cross-spectrogram is part of the cross-quadratic class with
smoothing kernel

ϕ(u, ν) = Whh(u, ν)

It is also worth noting that the order of the signals in the
cross-Wigner-Ville distribution matters, which is shown in the
following lemma.

Lemma 2. Given two signals x and y, switching the order of
the signals in the cross-Wigner-Ville distribution is the same
as taking the complex conjugate, i.e.

Wxy(t, ω) = W yx(t, ω) (9)

Proof. With x and y switched in (6) the right hand side of the
equality is

W yx(t, ω) =

∫
y
(
t+

τ

2

)
x
(
t− τ

2

)
eiωτdτ

= −
∫

y

(
t− τ̂

2

)
x

(
t+

τ̂

2

)
e−iωτ̂dτ̂ = Wxy(t, ω)

using τ̂ = −τ .

B. Reassignment vectors

Now that all necessary notions have been defined, the main
result of the paper follows.

Theorem 1. The reassignment vectors for the cross-
spectrogram can be computed as

t̂xy(t, ω) = t− 1

2

(
F th
x (t, ω)

Fh
x (t, ω)

+
F

th

y (t, ω)

F
h

y(t, ω)

)
(10)

ω̂xy(t, ω) = ω − i

2

F
dh
dt
x (t, ω)

Fh
x (t, ω)

−
F

dh
dt
y (t, ω)

F
h

y(t, ω)

 (11)

where F th
x and F

dh
dt
x (t, ω) are the STFTs where t · h(t) and

dh(t)/dt are used as windows, respectively.

Proof. Firstly, the reassignment in the time domain will be
shown and we start from the expression in (4). The denomi-
nator is easily found to be Fh

x (t, ω)F
h

y(t, ω) from Lemma 1.
Next, it will be shown that the numerator can be written as

1

2

(
F th
x (t, ω)F

h

y(t, ω) + Fh
x (t, ω)F

th

y (t, ω)
)
.

The first step is to apply Lemma 1 on both terms in the
equation above. This results in

1

2

∫∫
Wh,th(u, ν)Wxy(t− u, ω − ν)du

dν
2π

+

1

2

∫∫
Wth,h(u, ν)Wxy(t− u, ω − ν)du

dν
2π

Now Lemma 2 can be used to rewrite the expression to

1

2

∫∫ (
Wh,th(u, ν) +Wh,th(u, ν)

)
Wxy(t− u, ω − ν)du

dν
2π

=
1

2

∫∫
2Re (Wh,th(u, ν))Wxy(t− u, ω − ν)du

dν
2π

where Re represents the real part. From [2] it is known that

Re (Wh,th(u, ν)) = uWhh(u, ν),

which means that the reassignment vector in (4) can be written
as

t̂x(t, ω) = t− 1

2

F th
x (t, ω)F

h

y(t, ω) + Fh
x (t, ω)F

th

y (t, ω)

Fh
x (t, ω)F

h

y(t, ω)
,

which further simplifies to (10).
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The derivation for the frequency reassignment is very sim-
ilar. The main difference is the fact that

Im
(
Wh, dh

dt
(u, ν)

)
= −νWhh(u, ν),

known from [2], where Im represents the imaginary part. Be-
cause the expression now contains the imaginary part instead
of the real part, there will be a subtraction between two terms
instead of an addition. With this, it can be shown that the
numerator of the reassignment vector in (5) is equal to

i

2

(
F

dh
dt
x (t, ω)F

h

y(t, ω)− Fh
x (t, ω)F

dh
dt
y (t, ω)

)
.

This means that the reassignment vector in (5) can be written
as

ω̂xy(t, ω) = ω − i

2

F
dh
dt
x (t, ω)F

h

y(t, ω)− Fh
x (t, ω)F

dh
dt
y (t, ω)

Fh
x (t, ω)F

h

y(t, ω)

which can be simplified to (11).

It can be noted that, if the two signals are the same, then
the reassignment vectors for the cross-spectrogram simplify to
those of the spectrogram.

C. Relation to STFT phase and magnitude

However, the cross-spectrogram reassignment vectors in
(10) and (11) are complex-valued, which means that they
cannot be used as TF coordinates in (1) directly. In this section,
we investigate the interpretation of the real and imaginary parts
of the reassignment vectors of the cross-spectrogram.

Let Mh
x (t, ω) = |Fh

x (t, ω)| and Φh
x(t, ω) = arg(Fh

x (t, ω))
be the magnitude and phase of the STFT, respectively. Then,
it is known from [17] that

F th
x (t, ω)

Fh
x (t, ω)

= t+
∂Φh

x(t, ω)

∂ω
− i

∂

∂ω
logMh

x (t, ω) (12)

F
dh
dt
x (t, ω)

Fh
x (t, ω)

=
∂

∂t
logMh

x (t, ω) + i
∂Φh

x(t, ω)

∂t
, (13)

where ∂
∂t and ∂

∂ω denotes the partial derivative with respect
to t and ω, respectively. Inserted into (10) and (11), the
reassignment vectors can be expressed in terms of the STFT
phases and magnitudes, resulting in

t̂xy(t, ω) = −
∂
∂ωΦ

h
x(t, ω) +

∂
∂ωΦ

h
y(t, ω)

2

+
i

2

∂

∂ω
log

Mh
y (t, ω)

Mh
x (t, ω)

(14)

ω̂xy(t, ω) =ω +
∂
∂tΦ

h
x(t, ω) +

∂
∂tΦ

h
y(t, ω)

2

+
i

2

∂

∂t
log

Mh
y (t, ω)

Mh
x (t, ω)

. (15)

This shows that the real part of cross-spectrogram reassign-
ment vectors relates to the STFT phases, while the imaginary
part relates to the magnitudes. In the case when x(t) = y(t),
i.e. in the reassigned spectrogram case, the reassignment

vectors become real-valued and can furthermore be shown to
equal the group delay and the instantaneous frequency of the
signal, respectively, as demonstrated in for instance [18]. In the
same way, in the case when x(t) ̸= y(t), the real parts of the
cross-spectrogram reassignment vectors relate to the average
group delay and instantaneous frequency of x(t) and y(t).

As such, only the real parts of the cross-spectrogram reas-
signment vectors are used to compute the reassigned cross-
spectrogram in (1). Using the facts that Re{−iz} = Im{z},
Re{F th

y /F
h

y} = Re{F th
y /Fh

y }, and Im{−F
dh
dt
y /F

h

y} =

Im{F
dh
dt
y /Fh

y }, the following simplified expressions for the
cross-spectrogram reassignment vectors are obtained

t̂final
xy (t, ω) = t− 1

2
Re

{
F th
x (t, ω)

Fh
x (t, ω)

+
F th
y (t, ω)

Fh
y (t, ω)

}
(16)

ω̂final
xy (t, ω) = ω +

1

2
Im

{
F

dh
dt
x (t, ω)

Fh
x (t, ω)

+
F

dh
dt
y (t, ω)

Fh
y (t, ω)

}
. (17)

III. SIMULATIONS

In this section, we demonstrate how the reassigned cross-
spectrogram can be used to determine phase shifts between
frequency-modulated signals and, in particular, how it im-
proves phase estimates in multi-component signals. This is il-
lustrated using simulated data on the following two-component
signals

x(t) = Re {s1(t) + s2(t)}+ nx(t), (18)

y(t) = Re
{
ei∆ϕ1s1(t) + ei∆ϕ2s2(t)

}
+ ny(t), (19)

where t = 1, 2, ..., 256, and ∆ϕ1 and ∆ϕ2 are the phase shifts
of s1(t) and s2(t) in y(t) compared to x(t). The components,
s1(t) and s2(t), are linear chirps given by

sk(t) = ei(ωkt+
1
2 ct

2+ϕk), k = 1, 2. (20)

In all simulations, the chirp rate c = 20/512, and the
frequency of the first component ω1 = 2π50/512 = 0.6136.
The phases ϕk, and phase shifts ∆ϕk, are uniformly distributed
between −π and π. Furthermore, two independent white
Gaussian noise processes, nx(t) and ny(t), were added to the
signals. All STFTs were computed with a Gaussian window
function, using 512 samples in the FFT. In Fig. 1(a) and (b),
the phase shifts of the reassigned cross-spectrogram and the
cross-spectrogram for signals in (18) and (19) are exemplified
with a signal-to-noise ratio (SNR) equal to 3 dB, where the
SNR is defined as the power of one chirp over the noise
variance.

In Fig. 1(c), 1000 simulations were made for signals without
added noise, with frequency differences ∆ω = ω1−ω2 ranging
between 0.1104 and 0.2148, corresponding with 18 to 35
frequency bins. The phase shift of each component k = 1, 2
was computed as

∆ϕ̂k(t) = argRSh
xy(t, ηk(t)), k = 1, 2, (21)

where arg denotes the argument in (−π, π], and ηk(t) is
the estimated TF ridge of component k in the reassigned
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Fig. 1: In a) and b) the phase of the reassigned cross-
spectrogram and the cross-spectrogram, respectively. The sig-
nals are separated by 25 samples in frequency-direction, such
that ∆ω = ω1 − ω2 = 0.1534. Furthermore, ∆ϕ1 = π/2 and
∆ϕ2 = −π/2, and SNR = 3dB. In c) the lowest possible
RMSE of the phase shift estimates is plotted against the
frequency distance ∆ω between the two signals in the noise-
free case. In d), the RMSE is plotted against the SNR of the
signals, where ∆ω = 0.1534 in all simulations.

cross-spectrogram (or cross-spectrogram). MATLAB’s func-
tion ‘tfridge‘ was used to extract the TF ridges ηk(t). This
function incorporates a penalty parameter to control for rapid
changes in frequency, ensuring smoothness of the extracted
ridge. For fairness, the TF ridges were extracted for 10
different penalties logarithmically spaced between 0.01 and
5, and the penalty resulting in the overall smallest root-mean-
squared-error (RMSE) is presented in the plot. Due to the
periodicity of the phase shift, the square error of the phase

Fig. 2: In a), an HRV-signal centered around zero, and the
corresponding respiratory signal, scaled by a factor of five, are
shown in blue and orange, respectively. In b) and c), the phase
of the reassigned cross-spectrogram and the cross-spectrogram
of the signals are shown, respectively.

shift estimates was computed as

SE =
1

2

2∑
k=1

| arg ei(∆ϕ̂k−∆ϕk)|2. (22)

Because reassignment improves resolution between compo-
nents, the reassigned cross-spectrogram results in lower RMSE
when extracting phase shifts of close components.

In the next simulation, the signals were separated in fre-
quency by ∆ω = 0.1534, like in Fig. 1(a) and (b), and white
Gaussian noise was added to the signals. The phase shifts were
extracted in the same way as above, and the smallest possible
RMSE for each SNR, based on 1000 simulations, is plotted in
Fig. 1(d). For SNR higher than 2 dB, the phase shifts extracted
using the reassigned cross-spectrogram remain accurate.

IV. REAL DATA EXAMPLE

Finally, the reassigned cross-spectrogram is exemplified on
real data. In this example, we consider the phase-relation
between the heart rate variability (HRV) and the respiratory
rate of an adult breathing following a metronome during 5
minutes, starting at 0.12 Hz and slowly increasing to 0.35 Hz.
More about the data acquisition can be found in [19]. The HRV
and respiratory signal are plotted in Fig. 2(a), and the phase
of the reassigned cross-spectrogram and cross-spectrogram are
shown in Fig. (b) and (c), respectively. At least two chirp-like
components, one fundamental frequency and one overtone, are
seen in the phase-representations. In both plots, the phase shift
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is just below π for the fundamental frequency, and just above
−π for the overtone.

V. CONCLUSION

In this paper, we have presented novel expressions for
the cross-spectrogram reassignment vectors, derived from the
cross-quadratic class. Furthermore, we show that the real
part of the cross-spectrogram reassignment vectors relates to
the phase information of the signals. Because the reassign-
ment technique improves resolution, the reassigned cross-
spectrogram is experimentally shown to improve estimates
of phase shifts between close signal components. In fu-
ture research, further improvements of the reassigned cross-
spectrogram could be made by incorporating, for instance,
higher-order derivatives or multitapers in the reassignment
vectors.

APPENDIX

Proof. We find the proof of Lemma 1 by expanding into a
double integral using (3)

F g
x (t, ω)F

h

y(t, ω) =∫∫
x(τ1)y(τ2)g(t− τ1)h(t− τ2)e

−iω(τ1−τ2)dτ1dτ2. (23)

Introducing the variables u and τ such that τ1 = u+ τ/2 and
τ2 = u− τ/2, the equality can be rewritten as

F g
x (t, ω)F

h
y(t, ω) =∫∫

x
(
u+

τ

2

)
y
(
u− τ

2

)
g
(
t− u− τ

2

)
h
(
t− u+

τ

2

)
dudτ.

The integral consists of two parts, one that only depends on the
signals, and one that only depends on the windows. The one
that depends on the signals can be seen as the cross-time-lag
distribution

rx,y(t, τ) = x
(
u+

τ

2

)
y
(
u− τ

2

)
.

The cross-time-lag distribution is connected to the cross-
Wigner-Ville distribution through an inverse Fourier transform
as

rx,y(t, τ) =

∫
Wx,y(t, ν)e

iντ dν
2π

. (24)

The second part of the expression in (23) is

ρg,h(t− u, τ) = g
(
t− u− τ

2

)
h
(
t− u+

τ

2

)
. (25)

Using the expression from equations (24) and (25) we find

F g
x (t, ω)F

h

y(t, ω) =∫∫
Wx,y(t, ν)

∫
ρg,h(t− u, τ)e−i(ω−ν)τdτdu

dν
2π

. (26)

From this expression, one can introduce the smoothing kernel

ϕg,h(t− u, ω − ν) =∫
ρg,h(t− u, τ)e−i(ω−ν)τdτ =∫
g
(
t− u+

τ

2

)
h
(
t− u+

τ

2

)
e−i(ω−ν)τdτ =

Wg,h(t− u, ω − ν). (27)

Finally

F g
x (t, ω)F

h

y(t, ω) =∫∫
Wx,y(t, ν)Wg,h(t− u, ω − ν)du

dν
2π

=∫∫
Wx,y(t− u, ω − ν)Wg,h(u, ν)du

dν
2π

. (28)
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