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Abstract—Fast and efficient implementations of Fourier’s anal-
ysis techniques for non-stationary signals have been desired
recently, not only in civilian but also in military applications. The
ability to work in a real-time regime with high dependability and
reliability when wideband signals are processed is a challenging
but highly desirable task (e.g. analysis of radar signals). This
article delves into the real-time implementations of two vari-
ants of vertical synchrosqueezing (VSS). The ability to achieve
real-time processing was enabled by leveraging Nvidia CUDA
technology. Validation through real-life radar signal processing
scenarios has confirmed the accuracy and efficiency of the
proposed algorithms. To the authors’ knowledge, this is the first
real-time implementation of VSS given in the literature.

Index Terms—signal processing, synchrosqueezing, GPGPU,
CUDA

I. INTRODUCTION

In recent years, there has been significant development
of Fourier’s analysis of non-stationary signals, often called
time-frequency (TF) methods in the literature. Alongside this
development, one can mention methods for improving the
short-time Fourier transform (STFT) readability, as pioneered
by Kodera et al. [1]. Of these, the VSS technique is one of
the most important and promising.

Vertical synchrosqueezing is a signal processing technique
used in TF analysis to improve the readability of the TF repre-
sentation of a signal. It involves squeezing the vertical axis of
the TF representation towards the instantaneous frequency of
the signal, thereby enhancing the visibility of its frequency
components and allowing for more accurate identification
of transient features. This approach can be advantageous in
analyzing non-stationary signals, which has made vertical
synchrosqueezing a technique successfully applied in many
areas, including radar systems [2], [3], voice signal processing
[4], seismic analysis [5], and engine vibration monitoring [6].

In the literature, the high-order synchrosqueezing transform
is relatively widely described [7], [8]. However, almost none
of the existing works consider the computational burden and
possibility of implementing the signal concentration method
on real-time platforms. To the authors’ knowledge, the first
attempt to address the real-time implementation of the VSS
was presented by the authors in [2], where the techniques were
used for radar signal analysis. This lack of consideration re-
sults from synchrosqueezing’s fundamental disadvantage, such
as the high computational complexity of more sophisticated
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and better-performing algorithms. Thus, in most cases, it is
impossible to perform real-time computations on a standard
MiCroprocessor.

The answer to this problem may be the general-purpose
computing on graphical processing units (GPGPU) and, par-
ticularly, CUDA technology. CUDA, introduced by Nvidia in
2007, is one of the most widespread technologies that enable
GPGPU. Apart from its enormous computing power, one of the
main advantages of CUDA is that it is a comprehensive tech-
nology. CUDA includes hardware, an application program-
ming interface based on a subset of the C/C++ programming
language, and numerous highly optimized libraries dedicated,
among others, to digital signal processing, such as cuFFT. All
these features make CUDA an easy-to-use and highly cost-
effective solution for performing parallel computations [9]. As
a result, it is very often used for computationally demanding
signal processing applications that must operate in real-time
[10], [11].

Thus, two selected synchrosqueezing algorithms presented
in [2] that give excellent results were implemented using
CUDA technology to make real-time computations possible
even for highly demanding tasks. The presented paper de-
scribes the implementation details as well as the obtained
performance of the efficient and real-time algorithms for non-
stationary radar signal processing.

II. HIGHER-ORDER VERTICAL SYNCHROSQUEEZING

The VSS improves the STFT separability by relocating
the transform values according to the instantaneous frequency
estimator. The STFT is defined as follows [12]:

Fl(t,w) :/x(Tth)h*(T)e*deT, (1
R
where z(t) is the signal under analysis, h(t) is an analysis

window, j2=—1, and z* is the complex conjugate of z. The
energy distribution referred to as spectrogram is given as

Sh(t,w) = | FE )| @

In general, (1) can be computed in two ways. The first
results from the definition (1) and relies on the convolution
computation of the window and signal modulated according to
the angular frequency w. The method is less efficient but per-
mits full control of processing parameters. The second method
uses the Fourier transform, which is more efficient, especially
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when using the fast Fourier transform (FFT). However, the
algorithms have some limitations, e.g. the relationship between
the number of FFT points and the analysis window width.
The component separability is obtained according to
(t,w) — (t,&(t,w)) using the instantaneous frequency es-
timator w(¢,w). The method preserves the distribution phase
unaffected and allows inverse transform. The VSS reads as [7]

S™(t,w) :/Fg(aﬂ)em(t*fo)a(w—wz(t,Q))dg, 3)
R

where § is a Dirac delta distribution.

The instantaneous frequency estimator &(¢,w) has an es-
sential influence on the synchrosqueezed STFT quality. The
more nonlinear the instantaneous signal frequency, the more
complex an estimator is needed to efficiently concentrate
the TF distribution. Among several estimators proposed in
the literature [7], the authors selected those with the lowest
computational complexity and the possibility of estimating
parameters of non-linear and frequency oscillating terms [2].
The first one gives the enhanced VSS (EVSS1) and its
frequency reassignment operator

allt,w) =3 (jw —

o5 @

@ (t,w)

where WX (t,w) and &P (t,w) are defined by (5) and (6) and

T

D"h = d:{%t) and 7"h = " - h(t). Operator (4) is an
extension (of the third-order) of the simplest operator [12]

~ s FzDh(tvw)

Oz (t,w) =S <]w - W) . )

The investigated approach, called EVSS1 assumes a signal
phase to be locally non-linear. From this feature, one can
concentrate strongly oscillating and non-linear components,
allowing its further reconstruction.

The second analyzed VSS variant comes from the assump-
tion on the third-order polynomial phase model composed of
the individual polynomial signal parameter estimators in the
TF domain. From its model, the variant is called canonical
third-order VSS (CVSS3), and its frequency reassignment

operator reads ol (t,w) =
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where p(t,w) is the complex angular jerk estimator given by

Py (tw)
PR (t,w)’

where pY (,w) and p (¢, w) are defined by (10) and (11) and
Gz (t,w) is the chirp rate estimator given by

Pz (t,w) = ©
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The MATLAB-based implementation of the presented
methods is available under the link: https://github.com/
kabratkiewicz/Time-frequency-toolbox

III. IMPLEMENTATION

As mentioned in the previous section, both presented algo-
rithms (CVSS3 and EVSS1) may be computed in two different
ways. The differences from the signal processing point of view
are not relevant, but from the implementation point of view,
they are crucial and lie in the way of computing the modified
STFTs required in (5), (6), (10), (11), and (12). In the first
approach, all STFTs are computed using FFT, while in the
second approach, STFT samples are computed element by
element according to the formula (1). The great advantage of
the first approach is the possibility of using the highly efficient
cuFFT library. On the other hand, the second one allows all
computations to be combined within one kernel function', thus
reducing the overhead associated with calling several kernel
functions. It also allows better use of the various types of
CUDA memories. As the advantages of both approaches are
significant, it was decided to implement both versions to check
which one would be more efficient.

Fig. 1 shows the general flowchart of the algorithm consid-
ering where the computations are performed. As can be seen,
in the first step, regardless of whether the computations are
performed using FFT or not, to calculate the synchrosqueezed
STFT it is necessary to compute all modified STFTs. This
requires all modified windows given by D"h = d’;ﬁﬁ“ and
T™h =t" - h(t) to be calculated.

A. Modified window computation

As the window samples are computed only once for a given
window width, these computations are not crucial for software
performance. Thus, they are performed in the prologue on a
central processing unit?> (CPU). Then, the calculated window
coefficients are copied to the graphics processing unit® (GPU)
memory. In the CUDA architecture, two types of memory
are suitable for this purpose: constant and global. Due to its
features, constant memory was chosen for this purpose.

B. Copying input signal between host and device

Then, the input signal is transferred to the global memory.
The need to transfer data between the CPU and GPU is one
of the fundamental GPGPU drawbacks*. Despite the very
high throughput provided by the latest generations of the
PCI Express bus, the enormous computing power of GPUs
is partially lost on data transfers. Fortunately, in this case, the
input signal is a one-dimensional vector of complex samples
with a size typically not exceeding tens of kB. As a result, data
transfer between the CPU and GPU takes relatively little time
in relation to the computation time, and its negative impact
is very limited in this case. All subsequent calculations are
carried out on the device.

I'A kernel function is a parallel subroutine executed by all threads according
to single instruction multiple threads (SIMT) architecture [13].

2Typically, in CUDA technology, CPU is referred to as the host.

3Typically, in CUDA technology, GPU is referred to as the device.

4This issue does not occur in the Nvidia Tegra system on a chip device
where CPU and GPU share the same memory space.
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Fig. 1. EVSS1/CVSS3 algorithm flowchart

C. GPU computation

As mentioned before, there are two possible approaches to
computing necessary STFTs and, as a result, two variants of
implemented algorithms. First, an algorithm that is based on a
convolutional approach (1) to computing STFTs is described.

1) Convolutional approach: The convolutional version of
the algorithm allows all the GPU calculations presented in
Fig. 1 to be performed by the dedicated single kernel function.
Such an approach minimizes the related overhead.

The most important task in the calculation of VSS given by
(3) is to compute the frequency reassignment operator w(t, w).
Thus a relatively natural way of decomposing the problem of
VSS is to assign to each CUDA thread exactly one IF estimate.
Such an approach requires the use of a two-dimensional grid
of threads. It has been decided that the X-dimension will
correspond to the discrete-time and Y-dimension to angular
frequency. This causes data transfer to bo coalesced.

Another choice that had to be made was the configuration
of the kernel function. In CUDA technology, all threads
are grouped in thread blocks. All threads within the same
thread block share resources such as registers or an L1 cache.
Moreover, they can exchange data with each other using shared

memory® and synchronize [13]. Considering the arrangement
of the input and intermediate data and the possibility of
sharing the calculated harmonic signal (¢~/“7 in (1)) among
all threads within the block, it was decided that the thread
blocks would be one-dimensional with Y-dimension equal to
one (one FFT bin).

The code of the kernel function itself can be divided
into several stages (Fig. 1). The first one is responsible for
calculating the samples of all modified STFTs that appear in
formulas (5), (6), (7), (10), (11), and (12).

First, the input signal fragments needed to perform calcula-
tions by the whole thread block are transferred from the global
to the shared memory. Although they are required later in
the algorithm, downloading them now helps to hide latencies
resulting from access to global memory.

Then the harmonic signal is computed and stored in the
shared memory. As already mentioned, one thread block
performs computations for one frequency bin, which means
that one thread block requires only one harmonic signal. Such
dimensionality of thread blocks minimizes the use of the
shared memory. Moreover, a single thread computes at most
one harmonic signal sample for typical window lengths . Thus
computing and using a harmonic signal is efficient.

The following two steps of windowing the harmonic signal
and calculating the dot product are tied together. The win-
dowed harmonic signal sample is first computed and stored in
the shared memory in the inner loop. After synchronization
between all threads within the block, the dot product (single
STFT sample) is calculated in the next loop. These procedures
are repeated in the outer loop for all modified windows. As
a result, one thread computes a one-dimensional array of
modified STFTs samples (for a single moment of discrete-time
and single frequency bin). Since only the same thread will use
these samples in further calculations, and the modified window
number is not high, it was decided that they will be stored in
registers®.

3Shared memory is the third type of CUDA memory. It is a user-controlled
L1 cache [14] with greater bandwidth and much lower latency than the global
memory.

ORegisters are another type of memory in the CUDA architecture. They
have the highest throughput, but their number is limited. Too high register
utilization limits the number of thread blocks concurrently running on a
streaming multiprocessor [15].
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In this case, using register memory is the most crucial
advantage of this version of the algorithm. Thanks to this,
it is possible to obtain a very high compute-to-global memory
access (CGMA) ratio’ and, as a result, very high performance.

The second stage of the kernel function (Fig. 1) is respon-
sible for computing the IF estimates. This means that this is
the only place where there are differences between the two
presented forms of VSS. In the case of CVSS3, each thread
computes a single frequency reassignment operator given by
(7), the second-order modulation operator given by (12), and
the third-order modulation operator given by (9). The modified
IF estimate, given by (8), is then computed. In contrast, for
the EVSS1 form, only the enhanced IF estimates defined in
(4) are computed. Again, the results, separate for each thread,
are stored in the register memory.

The transformation points are relocated in the last step,
resulting in the VSS defined in (3). In practice, it comes down
to adding the product F(¢,w’)e/* (!=10) to the output array
element with an address along the X-axis that corresponds to
the thread X-dimension identifier and along the Y-axis with an
address that corresponds to the estimated angular frequency.
This means that many concurrent threads can add partial
results to the same global array elements. Thus, the atomic
operations that serialize all updates to the same locations
must be applied to ensure the correctness of the final result.
As is known, serializing any part of a parallel program can
significantly reduce the execution speed. Moreover, many
atomic operations can also make it impossible to hide latencies
in access to global memory [16]. Fortunately, serialization only
takes a small fraction of the code at the end of the kernel’s
function, resulting in little performance impact.

2) FFT approach: In the first step, the window-length seg-
ments of the input signal are multiplied by modified windows.
The dedicated optimized kernel function has been created for
this operation. Zero padding is done by zeroing the whole data
block during allocation and appropriate memory addressing
within the kernel function. This is possible thanks to the
assumption that neither the window size nor the FFT size
changes during a single program run. It should be emphasized
here that the data are stored continuously. Thus subsequent
FFT calculations are performed by one execution of the
cufftExecC2C() function in a batched manner.

The last stage of calculations performed on the GPU, the
IF estimator computation and relocation of transform points,
is carried out using a dedicated kernel function. Its code is
identical as in the case of the second and third stages of the
kernel function described in the previous subsection. The only
differences are that the input data is in the global memory,
not in registers, and it is necessary to transpose each of the
modified STFTs because of the manner they are stored for
cuFFT library.

7CGMA ratio informs how many arithmetic operations are performed per
one global memory transfer operation, which has a significant impact on
computational performance.

D. Copying results between device and host

The last stage of the program depends on the adopted
execution path. If the data is further processed on the GPU,
other kernel or library functions are called here. If the data is
processed on the CPU, it must first be copied from the GPU
to the CPU. In this case, transfer operation has a negative
impact on the overall software performance. This is because
the output data size depends not only on the signal length but
also on the number of frequency bins. Thus the output data
size may be several orders of magnitude larger (typically in
the order of tens of MB) than the input data size. As a result,
copying data from the GPU to the CPU can take as long as
computations.

Fortunately, in CUDA technology, there is a so-called
CUDA streams mechanism that partially mitigates this dis-
advantage. This optimization technique introduces additional
parallelism. It allows kernel execution and asynchronous data
transfer to overlap, significantly reducing the overall compu-
tation time [13].

IV. RESULTS

A detailed discussion of the results, from the signal process-
ing point of view, of both the CVSS3 and the EVSS1 form of
synchrosqueezing can be found in [2]. Therefore, this aspect
of the presented algorithms will be discussed briefly. The
signal selected for validation tests was a non-linear frequency-
modulated (NLFM) pulse originating from the S-Band Air
Traffic Control radar at Warsaw’s Chopin Airport. Fig. 2a
shows the spectrogram obtained using classical STFT. Fig. 2b
shows the result of the convolutional version of the CVSS3
algorithm. A clear NLFM pulse is apparent, allowing the direct
pulse to be distinguished. Since the local transform points
were relocated to the signal instantaneous frequency ridge,
the distribution is more sharp and readable than in the case
of classical STFT. It should be noted here that the EVSS1
algorithm gives almost the same results in this case, while the
FFT-based versions provide the same results apart from the
numerical issues, and therefore, there is no need to present
their visual results.

The correctness of the calculations is proven by the high
reconstruction quality factor (RQF) [7] values, which for the
selected signal are 45 dB for CVSS3 and 45.7 dB for EVSS1,
respectively, while for the calculations performed in Matlab,
they are 45.3 dB and 45.9 dB, respectively.

However, in the presented work, the main emphasis is on
examining the performance of the described real-time CUDA
implementations of the presented algorithms. All calculations
were performed on single-precision floating point numbers.
The performance tests were carried out on the RTX 4070 Super
GPU connected to CPU via the PCI-E 4.0 x16 bus, running
under the Ubuntu OS and CUDA SDK 12.8. During the tests,
three tools were used to measure the time and validate the
measurements: the CUDA event mechanism, Nvidia Visual
Profiler (nvprof), and high-resolution CPU timer from the
real-time extensions library. All the computations were called
repeatedly. Then the shortest execution time was chosen to
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Fig. 2. Test NLFM signal: a) Spectrogram of the test signal obtained with
classical STFT; b) Spectrogram of the test signal obtained with CVSS3

become independent from the instantaneous load changes of
both the CPU and the GPU.

As it turned out, for typical processing parameters, i.e., FFT
length less than 10000 and window length less than 100, the
convolutional versions of both algorithms proved to be more
efficient than the FFT-based. In addition, the CVSS3 version
is slightly slower than EVSS1. As a result, performance tests
were conducted for the convolutional version of CVSS3.

The execution time tests were performed for one typical case
with a signal length of 16384 samples. Both processing time
and data copy time between host and device were considered.
Table I shows the maximum signal sampling rate expressed in
million samples per second (Sa/s) for various FFT and window
lengths, enabling real-time processing.

TABLE 1
MAXIMUM SAMPLING RATE FOR REAL-TIME SIGNAL PROCESSING.

Sampling FFT length

rate [MSa/s] 512 1024 2048 4096 8192
a 32 2.56 1.38 0.67 0.34 0.17
§ 48 2.14 1.14 0.56 0.28 0.14
E 64 1.97 0.96 0.48 0.24 0.12
E 80 1.68 0.85 0.42 0.21 0.11
= 96 1.49 0.74 0.37 0.18 0.09

As can be seen, it is possible to process signals in real-time
with sampling rates exceeding 2 MSa/s but at the price of
lower frequency resolution and shorter window lengths. On the
other hand, for typical processing parameters, signal sampling
rates higher than 500 kSa/s are applicable.

V. CONCLUDING REMARKS

This article has presented the real-time implementations
of two variants of vertical synchrosqueezing — CVSS3 and
EVSSI. In this case, real-time processing is possible thanks

to utilizing Nvidia CUDA technology. To the authors’ knowl-
edge, these are the first real-time implementations of syn-
chrosqueezing introduced in the literature.

In-depth tests and performance studies revealed that these
algorithms ideally map to the CUDA architecture. This is
evidenced by the high computing performance achieved. As a
result, for the GPU selected for tests, it is possible to process
signals in real-time with a sampling rate of hundreds of kSa/s
and up to 2 MSa/s. This is an excellent result, especially
considering how computationally complex the presented al-
gorithms are.

Further research covers implementing the presented algo-
rithms on embedded systems like Nvidia Jetson platforms to
check whether it is possible to use the proposed algorithms in
portable devices, for example, to monitor vital signs.
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