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Abstract—We address the problem of detecting the number
of complex exponentials and estimating their parameters from a
noisy signal using the Matrix Pencil (MP) method. Leveraging the
recently introduced MP modes and their spectral structure, we
propose SAMP++, a new MP algorithm that accurately detects
the model order by exploiting mode interdependencies. Empirical
results show that SAMP++ significantly outperforms standard
MP implementations, prevalent information-based criteria, and
the recently proposed SAMP algorithm.

Index Terms—Matrix Pencil Method, model-order detection,
parameter estimation, clustered frequencies, super-resolution.

I. INTRODUCTION

THE classical signal model consisting of a sum of complex
exponentials and additive noise has many applications in

communications, audio, radar, and biomedical signal analysis
[1], [2] and is given by:

y(n) =

M∑
i=1

bie
(−di+jθi)n + w(n), 0 ≤ n ≤ N − 1. (1)

where w(n) is the additive noise, M is the number of complex
exponentials (or model order), bi = |bi|ejϕi are the complex
amplitudes, ϕi ∈ R are the initial phases, 0 ≤ di ∈ R are the
damping factors and θi ∈ R are the normalized frequencies.
The complex exponentials zi = e−di+jθi are assumed to be
distinct and termed the signal poles.

Given N samples of y(n), the goal is twofold: (i) detect
the (discrete-valued) model order M , and (ii) estimate the
(continuous-valued) parameters of interest {bi}Mi=1, {di}Mi=1,
and {θi}Mi=1. This is a fundamental detection-estimation prob-
lem in signal processing, and numerous methods have been
proposed for this problem, including maximum likelihood-
based techniques [3], subspace-based approaches such as
MVDR [4], MUSIC [5], ESPRIT [6], MODE [7], SPICE [8],
and more recently, neural network-based approaches [9]–[11].

We consider the MP method, introduced in [12] as a super-
resolution technique for estimating the parameters in (1).
Numerous MP method variants exist, e.g., [13], [14], and
they typically assume a known model order or determine it
via singular value truncation. Recently, a novel approach for
model order detection was proposed in [15], leveraging the
concept of MP modes, which was inspired by Dynamic Mode
Decomposition [16]. There, the left and right MP modes are
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defined as the columns and rows of the pseudoinverse matrix
of the generalized eigenvectors matrix obtained by the MP
method. These modes are shown to be of two types: signal
modes and noise modes. The model order is determined by
identifying the signal modes, using their expected structure.
Unlike traditional approaches, this method exploits spectral
information embedded in the eigenvectors, offering a funda-
mentally different perspective than existing methods, which
almost exclusively rely on singular values.

In this paper, we present a new approach to leveraging the
spectral information within MP modes, resulting in a robust
MP algorithm, termed the Structure-Aware Matrix Pencil++
(SAMP++). We show that SAMP++ is highly effective for
clusters of closely-spaced frequencies and low signal-to-noise
ratio (SNR) values. Specifically, we show that in the presence
of noise, signal modes exhibit interdependencies that can be
exploited through correlation analysis, providing a reliable
basis for enhanced model-order detection method.

We show in simulations that SAMP++ outperforms the
recent SAMP method [15], which disregards mode interdepen-
dencies, existing MP implementations, which rely on singular
value truncation for model-order detection, and the preva-
lent information-based criteria, which depend on the often-
unknown likelihood function. This superiority is demonstrated
in challenging scenarios with clustered frequencies and low
SNR values.

II. BACKGROUND: THE MATRIX PENCIL METHOD

The MP method begins by constructing an (N−L)×(L+1)
Hankel matrix Y from the noisy measurements y(n):

Y =


y(0) y(1) · · · y(L)
y(1) y(2) · · · y(L+ 1)

...
...

. . .
...

y(N − L− 1) y(N − L) · · · y(N − 1)

 , (2)

where L is termed the pencil parameter. It is assumed that
M ≤ L ≤ N − M for the MP theorem to hold (see [12,
Theorem 2.1] for more details), and that N

3 ≤ L ≤ N
2 for

minimal variance in the estimator [17], [18].
Next, two sub-matrices Y0 and Y1 are derived from Y

by removing its last and first columns, respectively. Without
noise, the ranks of Y0 and Y1 are M , making the detection
problem trivial. However, in the presence of noise, Y0 and
Y1 attain full rank L. Consequently, L − M extraneous,

2637ISBN: 978-9-46-459362-4 EUSIPCO 2025



noise-related components are introduced, and the model order
needs to be determined in addition to the estimation of the
parameters.

Standard implementations of the MP method are based on
the Singular Value Decomposition (SVD) of Y0:

Y0 = UΣVH , (3)

where U ∈ C(N−L)×L and V ∈ CL×L are unitary matrices,
Σ = diag(σ1, . . . , σL) with σ1 ≥ σ2 ≥ . . . ≥ σL are
the singular values, and (·)H denotes the complex conjugate
transpose. The model order is usually detected by truncating
the singular values in Σ. Commonly used techniques are the
Significant Decimal Digit (SDD) and the spectral gap [13],
[19], [20]. Another widely used approach is the information-
theoretic based estimators (ITE) [2], [21], which require prior
knowledge of the likelihood function, and are computationally
inefficient, as the likelihood must be computed repeatedly for
each hypothesized model order.

After detecting the model order M̂ , (3) is rewritten using
the largest M̂ singular values and vectors. This yields the MP
(a generalized eigenvalue problem):

Y1 − λY0 = UΣ(A− λI)VH , (4)

where the square, non-symmetric matrix A ∈ CM̂×M̂ is:

A = Σ−1UHY1V, (5)

and λ denotes the MP eigenvalue. The MP method is based
on finding the eigenvalues of Y1−λY0 as an estimate for the
signal poles zi. Instead of directly solving (4), the estimates
of the signal poles are obtained by the eigenvalues of A [12],
which is favorable because M̂ ≤ L = rank(Y0). Accordingly,
an eigenvalue decomposition (EVD) of A is performed:

A = QΛQ−1, (6)

where Λ = diag(λ1, . . . , λM̂
) and Q ∈ CM̂×M̂ contains the

eigenvectors as columns. The estimates of the damping factors
and normalized frequencies are given by:

d̂i = log|λi| , θ̂i = arg(λi) , i = 1, 2, . . . , M̂ , (7)

and the amplitudes {bi}M̂i=1, are estimated by solving the linear
least squares problem [13]:

b̂i = argmin
bi

N−1∑
n=0

|y(n)− λn
i bi|2, 1 ≤ i ≤ M̂. (8)

III. MP MODES AND THEIR INTERDEPENDENCE

A new approach for detecting the model order, utilizing the
temporal information encoded in the spectral components, was
proposed in [15] with the introduction of the MP modes.

Definition 1 (MP modes). The right MP modes are defined
as the rows of:

ΦR := Q−1VH ∈ CL×L. (9)

Similarly, the left MP modes are defined as the columns of:

ΦL := UΣQ ∈ C(N−L)×L. (10)

In [15] it was shown that the L left modes can be divided
into two types: M signal modes and L − M noise modes,
where each signal mode is associated with a signal pole.
Without loss of generality, it is assumed that the M signal
modes are the leftmost columns of ΦL. It was further shown
that under mild assumptions, any left signal mode Φi

L can be
recast as:

Φi
L
∼=


1
zi
...

zN−L−1
i

+

M∑
m=1
m ̸=i

γi,m


1
zm
...

zN−L−1
m

+ ξi (11)

where Φi
L is the i-th column of ΦL. The coefficients γi,m and

noise-related vector ξi are controlled by the SNRi := |bi|2
σ2
w

and the i-th pole separation: min
m ̸=k

|zi − zm|, assuming that the

additive noise in (1) follows w(n)
i.i.d.∼ N (0, σ2

w).
Equation (11) implies that the i-th signal mode Φi

L carries
information not only about its corresponding signal pole zi but
also about the remaining M−1 signal poles {zm}m̸=i. First, in
the following proposition, we show that this interdependence
is well characterized and controlled.

Proposition 1. For any ε ∈ (0, 1), γi,m is bounded by:√
log

(
2

2− ε

)
Bi

3∆i
≤ |γi,m| ≤

√
log

(
2

ε

)
Bi

|zi − zm|
, (12)

w.p of at least 1− ε, provided that 2|δzi| ≤ |zi − zm| ≤ ∆i,
for some constant ∆i, where: Bi = 2

√
2

SNRi
∥um ∗ qi∥2 .

Proof. See Appendix.

The vector um is defined by: uT
m :=

[
0, pH

m

]
−zi

[
pH
m, 0

]
,

where pm and qi are the m-th and i-th left and right
eigenvectors of the noiseless MP, respectively (see [15, Section
II.C] for more details).

Second, we assert that signal mode interdependence can
be leveraged by computing the correlations between them,
quantified through the sample covariance between the i-th and
k-th signal modes1:

[C]i,k :=
(
Φi

L

)H
Φk

L. (13)

Using (11), equation (13) can be written as2:

[C]i,k = D(θi − θk) + αi,k + βi,k, (14)

where D(θ) = sin(0.5θ(N−L))
sin(0.5θ) e−j0.5θ(N−L−1) is the Dirichlet

kernel of order N − L, and θi and θk are the corresponding

1Assume the modes are centered, by subtracting their respective means.
2For simplicity, we assume that the signal is undamped; however, as shown

in Sec. V, SAMP++ performs well for damped signals.
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frequencies of zi and zk, respectively. The term αi,k consists
of the cross-terms that include only the coefficients γn,m:

αi,k =

M∑
m=1
m̸=k

γk,mD(θm − θi) +

M∑
m=1
m̸=i

γi,mD(θk − θm)

+

M∑
m=1
m̸=i

M∑
n=1
n ̸=k

γi,mγk,nD(θm − θn),

(15)

and βi,k represents the remaining cross-terms, which include
the noise vectors ξi and ξk controlled by SNRi and SNRk,
respectively [15, Section III, Proposition 3].

We argue that for clustered frequencies, αi,k contributes
non-negligibly to the sample covariance in (14). We call θi
and θm clustered if |θi − θm| ≪ 2π

N−L . Applying proposition
1 for ∆i ≪ 2π

N−L , we have:

|γi,m| ≫ Bi

√
log

(
2

2− ε

)
N − L

6π
, m ̸= i. (16)

Observing (15), this suggests that for clustered frequencies
|αi,k| contributes non-negligibly to |[C]i,k| in (14). This stems
from (i) non-negligible contributions of the coefficients γi,m
and γk,m based on (16), and (ii) the corresponding terms
D(θk − θm) and D(θm − θi) that attain large values, as
|D(θ)| ≈ N − L for |θ| ≪ 2π

N−L .
The analysis above suggests that when frequency clusters

are present, the i-th row of C contains several high-value
entries corresponding to signal modes associated with frequen-
cies in the same cluster as the i-th frequency. In the sequel,
these values serve as explicit cues for developing a robust
model-order detection method. Conversely, since noise modes
lack a specific structure, their corresponding rows are expected
to have uniformly low values, reflecting weak correlations with
other modes (see Fig. 1 for illustration).

IV. PROPOSED ALGORITHM

Based on Sec. III, we propose a new model-order detection
method that identifies signal modes by considering their in-
terdependence. We define the following feature to determine
whether the i-th mode is associated with a signal or noise:

ϵi := aρi + (1− a)σi, 1 ≤ i ≤ L, 0 ≤ a ≤ 1. (17)

The proposed feature is a convex sum of two terms; the first
term ρi is adopted from [15]:

ρi =
1

dθi
max

1≤k≤N−L
|F(Φi

L)[k]|, (18)

where F(Φi
L)[k] is the DFT of Φi

L at the k-th frequency bin,

dθi =
L∑

m=1
|θ̂i − θ̂m|2 is a measure of the frequencies spread

around the spectrum peak, and {θ̂m}Lm=1 are the estimated
frequencies extracted from the corresponding poles, according
to (7). The second term σi is the standard deviation of the
magnitudes of the off-diagonal elements in the i-th row of C:

σi := std({|[C]i,k|}k ̸=i). (19)

(a) Randomly selected signal row (b) Randomly selected signal row

(c) Randomly selected noise row (d) Randomly selected noise row

Fig. 1: Signal-related rows of C (excluding the main diagonal)
in (a) and (b), and noise-related rows of C (excluding the
main diagonal) in (c) and (d). We simulate the signal (1) with
M = 4 undamped poles grouped into two frequency clusters
where N = 151, L = 50 and SNR = 20 [dB].

The scalar a balances between mode energy and mode corre-
lations; in our experiments, we set a = 0.5, assuming that ρi
and σi are normalized to the interval [0, 1].

Intuitively, large values of ϵi indicate that Φi
L is likely

a signal mode due to high energy or strong correlations to
other signal modes associated with frequencies within the
same cluster of frequencies. Conversely, as noise modes lack a
particular structure, small values of ϵi indicate that Φi

L is likely
a noise mode. The set of features {ϵi}Li=1 in (17) is used to
determine the model order by dividing them into two distinct
subsets: signal-related and noise-related. The cardinality of
the signal-related subset then determines the model order.
We propose to use the k-means algorithm with k = 2 for
implementing this division.

The proposed algorithm, termed SAMP++ , is summarized
in Algorithm 1. SAMP++ reduces to the SAMP algorithm
from [15] by setting a = 1 in (17). In Sec. V, we will show
that SAMP++ demonstrates enhanced model order detection
capabilities for clusters of frequencies with M > 2. Similarly
to SAMP, SAMP++ is robust to noise and distribution-free.
As in SAMP [15, Section VI], we apply a weak-truncation
method to the SVD of Y0 in step 1 of Algorithm 1.

V. NUMERICAL RESULTS

We present simulation results considering two clusters of
frequencies and low SNR values. We focus on the detection
capabilities of the proposed SAMP++ (Algorithm 1), as the
estimation step is performed in the same manner in all the
competing methods using the eigenvalues as described in (7).
We compare the proposed SAMP++ with five other methods,
including SAMP.

We consider two ITE methods: the MDL [2] and EVT [21]
criteria. These methods require prior knowledge of the noise
distribution and involve computing the likelihood function for
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Algorithm 1 SAMP++ proposed algorithm
Input: Noisy measurements {y(n)}Nn=1, pencil parameter L.
Output: Estimates of the signal frequencies, damping factors,
and amplitudes.

1: Modes and Eigenvalues Computation:
• Construct Y0,Y1 from the measurements {y(n)}N−1

n=0

by (2), and compute the SVD of Y0 = UΣVH .
• Compute the EVD of A = Σ−1UHY1V, by (6).
• Calculate the MP modes ΦR and ΦL by (9) and (10).

2: Parameter Estimation:
• Estimate the frequencies and damping factors by (7):

θ̂i = arg(λi), d̂i = log|λi|, 1 ≤ i ≤ L.

• Estimate the complex amplitudes by [15, Eq. (43)]:

b̂ = (eT1 ΦL)
T ⊙ (ΦRe1).

3: Model Order Detection:
• Compute the L features by (17):

ϵi = aρi + (1− a)σi, 1 ≤ i ≤ L.

• Partition the set {ϵi}Li=1 into two distinct subsets and
select the subset with the highest average value.

• Set the model order to: M̂ = |S|, where S is the index
set of the subset with the highest average value.

4: Parameter Selection:
• Select the signal components by: θ̂s, d̂s, b̂s, s ∈ S.

each hypothesized model order, making them computationally
inefficient. We note that we also evaluated the AIC criterion
[2] which achieved much lower results and was omitted. The
remaining methods rely solely on analyzing the singular values
in (3), the standard approach in the MP literature. Specifically,
we evaluate the SDD and GAP methods, which are widely
used for SVD truncation [13], [19], [20].

We simulate a sum of four complex exponentials grouped
into two clusters, each containing two closely-spaced fre-
quencies, following (1) with M = 4, {bi = 1}4i=1, and
{ϕi = 0}4i=1. Additionally, we set L = round(N/3). We
conduct two experiments. In the first experiment, we consider
four undamped exponentials by setting {di = 0}4i=1 in (1),
while in the second experiment, we consider four damped
exponentials by setting d1 = d3 = 0.03, and d2 = d4 = 0.05
in (1). Given a finite sample of the noisy signal {y(n)}N−1

n=0 ,
as in (1), our goal is to detect the model order (the number
of complex exponentials), which is 4 in our simulations. The
code to reproduce these results is available in this GitHub link.

We determine the probability of correctly identifying the
model order, pd = P(M̂ = M) ∼= 1

Nexp

∑Nexp
i=1 1M̂=M

, where
Nexp = 1000 is the number of independent Monte-Carlo
trials, and 1

M̂=M
is an indicator function that equals 1 if the

estimated model order M̂ matches the true model order M ,
and 0 otherwise. We also present the Area Under the Curve
(AUC) for each method to simplify the comparisons.

(a) Undamped (b) Damped

(c) Undamped (d) Damped

(e) Undamped (f) Damped

Fig. 2: Probability of correct model order detection versus
the SNRdB in (a) and (b), the distance between clusters of
frequencies dmin in (c) and (d), and the number of samples N
in (e) and (f). SNR = 10 [dB] in (c)-(f).

Fig. 2a-2b display pd versus the SNR in dB, for N = 151
samples, θ1 = 2 rad/sample, θ3 = 4 rad/sample and
θ2 = θ1 + 1.5π

N , θ4 = θ2 + 1.5π
N . The values of θ2 and θ4

are chosen such that the spacing |θ2 − θ1| = |θ4 − θ3| = 1.5π
N

is smaller than the Rayleigh limit [22] and also smaller than
2π

N−L , forming two clusters as defined in Sec. III. The SNR

is defined as SNR =
M∑
i=1

|bi|2
σ2
w

. Fig. 2c-2d display pd versus

the minimal distance between the two clusters of frequencies,
denoted as dmin, for SNR = 10 [dB], N = 151 samples,
and the frequencies distance within each cluster is also 1.5π

N .
Fig. 2e-2f display pd versus the number of samples N , for
SNR = 10 [dB], and {θi}4i=1 are the same as in Fig. 2a-2b.

We observe that SAMP++ significantly outperforms the
SDD and GAP methods across all tested scenarios. Empiri-
cally, SDD tends to overestimate the model order, while GAP
typically underestimates it, leading to poor results. Addition-
ally, SAMP++ outperforms the MP-based MDL and EVT
criteria, even though it does not assume any prior knowledge
about the noise distribution. Finally, we see that SAMP++
achieves better results compared to the SAMP method in
all the presented scenarios, demonstrating the contribution of
considering modes correlations as described in Sec. IV.
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VI. CONCLUSION

We suggested a modified MP method termed SAMP++ for
the complex exponentials detection-estimation problem that
leverages the concept of MP modes. Using the MP modes and
their interdependencies, we developed a robust model-order
detection method that integrates mode correlations and energy.
Our simulations show that the proposed method outperforms
the recently introduced SAMP method, as well as standard
singular value-based methods, and common information-based
approaches, which assume prior knowledge of the likelihood
function and are computationally inefficient.

APPENDIX A
UPPER AND LOWER BOUND OF |γi,m|

The coefficients γi,m are defined by [15, Sec. III]: γi,m =
uT

mQiw
(z̃i−zm)bi

, where z̃i is a perturbation of zi. Using the proof
of Proposition 3 in [15], it holds that E[γ̄i,m] = 0 and
Var(γ̄i,m) =

∥um∗qi∥2
2

SNRi
, for γ̄i,m =

uT
mQiw
bi

, and that |γ̄i,m| fol-
lows a Rayleigh distribution with scale parameter Var(γ̄i,m).
Assuming that 2|δzi| ≤ |zi − zm| ≤ ∆i, where δzi = z̃i − zi,
we derive the following bound:

|zi − zm|
2

≤ |z̃i − zm| ≤ 3

2
|zi − zm| ≤ 3

2
∆i, (20)

using standard triangle inequalities. Utilizing (20), we derive
the following bounds, with a probability of at least 1− ε:

|γi,m| ≥ 2

3∆i

√
2log( 2

2−ε )

SNRi
∥um ∗ qi∥2 , (21)

|γi,m| ≤ 2

√
2log( 2ε )
SNRi

∥um ∗ qi∥2
|zi − zm|

(22)
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