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Abstract—Sparse random mode decomposition (SRMD) is
a novel algorithm that constructs a random time-frequency
feature space to sparsely approximate spectrograms, effectively
separating modes. However, it fails to distinguish adjacent
or overlapped frequency components, especially, those with
crossover instantaneous frequencies. To address this limitation,
an enhanced version, termed three-dimensional SRMD (3D-
SRMD), is proposed in this paper. In 3D-SRMD, the random
features are lifted from a two-dimensional space to a three-
dimensional (3D) space by introducing one extra chirp rate
axis. This enhancement effectively disentangles the frequency
components overlapped in the low dimension. Additionally, a
novel random feature generation strategy is designed to improve
the separation accuracy of 3D-SRMD by combining the 3D
ridge detection method. Finally, numerical experiments on both
simulated and real-world signals demonstrate the effectiveness of
our method.

Index Terms—sparse random mode decomposition, signal de-
composition, chirp rate, crossover instantaneous frequency.

I. INTRODUCTION

Non-stationary signals are ubiquitous in both natural [1],
[2] and engineering systems [3], [4]. These signals are typi-
cally modeled as superpositions of amplitude and frequency-
modulated modes, called multi-component signals (MCSs) [5].
To reveal the time-varying characteristics of these signals,
time-frequency analysis (TFA) methods are introduced. A
significant challenge within the TFA area is to separate the
intrinsic modes within MCSs, commonly referred to as signal
decomposition.

Initially, most decomposition methods directly extract in-
trinsic mode from MCSs in the time domain, e.g., the empirical
mode decomposition [6] and its variants [7], [8]. However,
these time-domain methods always lack mathematical foun-
dations. On the other hand, since many real-world signals
exhibit sparsity in the Fourier spectrum, variational mode
decomposition [9] and its improved versions [10], [11] have
been proposed to separate the intrinsic modes from MCSs in
the frequency domain. However, these methods formulated
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in the frequency domain are unable to extract the wide-
band modes that have an overlapping spectrum. Recently,
to analyze wide-band signals, Chen et al. developed two
advanced methods based on the multi-component chirp signal
model, i.e., nonlinear chirp mode decomposition (NCMD) [12]
and intrinsic chirp component decomposition (ICCD) [13].

More recently, sparse random mode decomposition (SRMD)
was proposed as a novel signal decomposition method [14].
Inspired by the sparse random feature expansion [15], [16],
SRMD begins by assuming that a signal can be approximately
represented as the sum of sparse random time–frequency (TF)
features. A spatial clustering algorithm is then utilized to
separate the localized random features, thereby effectively
achieving mode separation with less mode mixing and fewer
Gibbs phenomena. However, adjacent or overlapped frequency
components cannot be separated in the two-dimensional (2D)
random feature space. Thus, SRMD is unable to disentangle
modes with crossover instantaneous frequencies (IFs).

To address this issue, an improved method called three-
dimensional SRMD (3D-SRMD) is proposed. Motivated by
the chirplet transform (CT) [17]–[19], we lift the random fea-
tures from the TF plane to a three-dimensional (3D) space, i.e.,
time-frequency-chirprate (TFC). This enhancement effectively
disentangles the frequency components overlapped in the
low dimension. Additionally, unlike SRMD, the concentrated
generation of random features ensures the sparsity of the
3D random feature space and eliminates the dependence on
clustering algorithms. By combining the 3D ridge detection
(RD) method, this new random feature generation strategy
effectively improves the mode separation of 3D-SRMD.

The remaining structure of this paper is outlined as follows:
Section II recalls the fundamental theory of SRMD. The
specific details of the proposed 3D-SRMD are delineated in
Section III. Section IV presents numerical results both on
simulated and real-world signals to demonstrate the superior
performance of the proposed method.

II. SPARSE RANDOM MODE DECOMPOSITION

The SRMD is achieved on the sparse random feature
approximation to the inverse short-time Fourier transform
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(STFT). Specifically, a signal x(t) ∈ L2(R) can be represented
by:

x(t) =

∫ +∞

−∞

∫ +∞

−∞
F gx (τ, ξ)g(t− τ)ej2πξtdτdξ, (1)

where F gx (τ, ξ) denotes the STFT of x(t) with g(t);
g(t) ∈ L2(R) is a (positive) window function such that∫ +∞
−∞ g(τ)dτ = 1.

Employing the sparse random feature expansion, the signal
can be approximated by random features (or basis) [15]:

x(t) =

∫ +∞

−∞

∫ +∞

−∞
F gx (τ, ξ)g(t− τ)ej2πξtdτdξ,

≈
N∑
i=1

cig(t− τi)ej2πξit =

N∑
i=1

ciϕi(t),

(2)

where (τ1, ξ1), · · · , (τN , ξN ) are drawn independently and
identically distributed (i.i.d.) from a distribution P (chosen
to be uniform in SRMD) with probability density function
p(τ, ξ); ϕi(t) represents the random feature; ci ∈ C denotes
the weight coefficients of ϕi(t).

Reference [20] proved that, for any δ > 0, with probability
at least 1 − δ over (τ1, ξ1), · · · , (τN , ξN ), there exist ci such
that the following approximation error bound in (2) holds:

‖x(t)−
N∑
i=1

ciϕi(t)‖2 ≤
C√
N

(1 +

√
2 log

1

δ
), (3)

where C = sup
|F gx (τ,ξ)|
p(τ,ξ) . This theory ensures the existence

of ci, paving the way for learning of optimal ci through
the construction of basis pursuit de-noising (BPDN) problem
[21], [22] and its solution via the L1 norm spectral projection
gradient (SPGL1) algorithm [23], [24].

In SRMD, (τi, ξi) with non-zero ci obtained by the BPDN
is expected to form a sparse TF representation of x(t). These
pairs with non-zero coefficients are then clustered using the
density-based spatial clustering of applications with noise
(DBSCAN) algorithm [25], thereby enabling the reconstruc-
tion of each mode based on the grouping of clusters, as
follows:

xk(t) =
∑
i∈Ik

c∗iϕi(t), k = 1, · · · ,K, (4)

where c∗i is the coefficient obtained by solving the BPDN
problem; K is the number of groups in the clustering results;
Ik represents the index set of the k-th group of random features
with non-zero coefficients.

III. PROPOSED METHOD

A. Three-Dimensional Random Feature Space

In (2), a specific pair of TF parameters (τi, ξi) uniquely
determines a feature ϕi(t). When the signal contains over-
lapped frequency components, the random features of different
modes in the overlapped region have the same TF parameters.
Consequently, it is impossible to separate the modes with
crossover IFs in the 2D random TF feature space. Inspired

by CT [17]–[19], we introduce chirp rate (CR) parameter
to lift the random feature to TFC space. CR represents the
rate at which frequency changes over time. When modes
exhibit frequency crossover, they typically have distinct CRs
at the crossover moment. Therefore, signals with overlapping
frequency components, which entangle in 2D TF plane, can
be separated in 3D TFC space (see Fig. 1 for an illustration).

Incorporating the CR into ϕi(t) of (2), we obtain the 3D
random features, as follows:

ϕ̌i(t) = g(t− τi)ej2πξitejπβi(t−τi)
2

, (5)

where βi represents the newly introduced random chirp rate
parameter. Similar to ϕi(t), the random feature ϕ̌i(t) cor-
responds to a specific tuple of TFC parameters (τi, ξi, βi).
Subsequently, a multitude of ϕ̌i(t) constructs a 3D random
feature space. Due to differences in TFC parameters, over-
lapped frequency components can be distinguished within this
3D space, ensuring the feasibility of separating modes with
crossover IFs.
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Fig. 1. The specific crossover frequency components s1 = cos(2π(400t −
100t2)) and s2 = cos(2π(200t + 100t2)) in (left) TF plane, (right) TFC
space.

B. Concentrated Distribution of Random Features

Despite the enhancement in dimension should work theoret-
ically, mode separation still fails due to the poor sparsity in the
3D random feature space (see Fig. 2 (left)) for an illustration).
Therefore, we propose a concentrated distribution strategy to
solve this issue.

Firstly, we consider a non-stationary MCS x(t), defined as
a superposition of AM-FM modes, as follows [12]:

x(t) =

K∑
k=1

xk(t) + e(t)

=

K∑
k=1

ak(t) cos(2π

∫ t

0

fk(τ)dτ + φk) + e(t),

(6)

where t ∈ [0, L], L denotes the temporal duration of the signal;
K ∈ N represents the number of intrinsic modes; ak(t) > 0
and fk(t) > 0 denote the instantaneous amplitude (IA) and IF
of k-th mode; φk stands for the initial phase; e(t) denotes the
additive noise.
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According to (2), the k-th mode in (6) can be approximated
by the 2D random feature model as:

xk(t) ≈
N∑
i=1

cki g(t− τki )ej2πξ
k
i t, (7)

where the TF parameter pairs (τk1 , ξ
k
1 ), · · · , (τkN , ξkN )

are drawn i.i.d. from a distribution Pk with pk(τ, ξ);{
ck1 , · · · , ckN

}
denote the weight coefficient of model, which

should be identified.
From (3), the approximation accuracy of the model is

influenced by the error constant C, which decreases as Pk ap-
proximates the distribution associated with | F gxk(τ, ξ) |. Given
that the STFT of xk(t) presents concentrated energy around
its IF [26], xk(t) can be approximated with high accuracy by
the model, whose random TF features are distributed around
the IFs.

Fig. 2. The 3D random feature space of the signal in Fig. 1 with (left) uniform
distribution and (right) concentrated distribution (color intensity indicates
weight magnitude).

Similarly, assuming that xk(t) can be approximated by the
3D random feature model from (5), we have:

xk(t) ≈
N∑
i=1

cki g(t− τki )ej2πξ
k
i tejπβ

k
i (t−τi)

2

, (8)

where (τk1 , ξ
k
1 , β

k
1 ), · · · , (τkN , ξkN , βkN ) are drawn i.i.d. from a

distribution Qk with qk(τ, ξ, β). Like the 2D case, to achieve
low approximation error, Qk should be concentrated around
the IF and CR of k-th mode. In this paper, Qk is be considered
as a band-limited uniform distribution, as follows:

qk(τ, ξ, β) =


1
λ2L , if τ ∈ [0, L],

ξ ∈ [f̂k(τ)− λ
2 , f̂k(τ) + λ

2 ],

β ∈ [f̂ ′k(τ)− λ
2 , f̂

′
k(τ) + λ

2 ],

0, else,

(9)

where f̂k(τ) and f̂ ′k(τ) represent the estimated IF and CR, λ
represents the bandwidth parameter of qk. Note that in this
paper, 3D RD algorithm in [27] is applied to estimate IF and
CR with the TFC representation generated by CT.

Random features for modes x1(t), · · · , xk(t) is generated
by following Q1, · · · ,Qk, respectively, thereby ensuring the
sparsity of the 3D random feature space (see Fig. 2 (right)
for an illustration)). Furthermore, the random features corre-
sponding to different modes are already separated by solving

BPDN, thereby obviating the need for a clustering algorithm.
Similar to (4), the mode can be reconstructed as follows:

xk(t) =

N∑
i=1

cki
∗
ϕ̌ki (t), k = 1, · · · ,K, (10)

where cki
∗ and ϕ̌ki (t) represent the coefficients and random

features, which correspond to the k-th mode.

Algorithm 1 3D-SRMD
Input: Signal x = [x1, · · · , xm]T , sampled time t =

[t1, · · · , tm]T , number of random features N , number of
modes K ,window parameters α, bandwidth parameter λ.

1: Estimate the IFs f̂1(τ), ..., f̂K(τ) and CRs f̂ ′1(τ), ...,
f̂ ′K(τ) by 3D RD algorithm.

2: Generate probability density function q1, ..., qK as (9).
3: for k = 1 to K do
4:

{
(τki , ξ

k
i , β

k
i )
}N
i=1

are drawn i.i.d. from Qk with qk,
5:

{
φki
}N
i=1
∼ B(1, 0.5).

6: end for
7: Construct the random feature matrix:

Ψ = [[ϕ̌1
i (t)] · · · [ϕ̌Ki (t)]] ∈ Rm×KN , ϕ̌ki (t) in (11).

8: Estimate the noise variance σ2 of x by TF segmentation.
9: Solve the BPDN problem by SPGL1:

c∗ = arg min
c=[c11···c1N ···cK1 ···cKN ]T∈RKN

‖c‖1

s.t.‖Ψc− x‖2 ≤
√
mσ.

Output: K modes xk(t) =
N∑
i=1

cki
∗
ϕ̌ki (t), k = 1, · · · ,K.

C. Algorithm Details
To reduce time consumption, we provide the real field

version of the random features, as follows:

ϕ̌ki (t) = g(t− τki ) cos(2πξki t+ πβki (t− τki )2 − π

2
φki ), (11)

where φki ∼ B(1, 0.5) serves as a unified replacement for
the cosine and sine phases, capturing the real and imaginary
components of the complex random features. Here, g(t) =

e−
t2

2α is chosen as a Gaussian window. It should be noted that,
in practical applications, BPDN requires an estimation of the
noise level in advance. Here, we adopt the TF segmentation
algorithm of the rectified STFT in [28] as a noise estimator.

Finally, the complete 3D-SRMD algorithm is outlined in
Algorithm 1.

D. Computational Complexity
As discussed above, the core of 3D-SRMD lies in solving

the BPDN problem. In each iteration of the SPGL1 algorithm
used for this purpose, the primary cost is divided into two
parts [23]. First, the matrix-vector multiplications involving
the dense random feature matrix Ψ and ΨT incur a cost
of O(mKN). Second, projecting the current point onto the
`1-norm constraint ball, which employs a fast sorting heap
structure, has a worst-case cost of O(m logm). Consequently,
the total cost of 3D-SRMD is O(mI(logm+KN)), where I
denotes the total number of SPGL1 iterations.
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IV. NUMERICAL RESULTS

In this section, both simulated and real-world signals with
crossover modes are considered to compare the performance
of 3D-SRMD with other methods, i.e., NCMD and ICCD.
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Fig. 3. (left) The TF spectrogram of the simulated signal by STFT; (right)
output SNR vs. input SNR for different methods
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Fig. 4. The random feature space of the simulated signal in (left) SRMD and
(right) 3D-SRMD (different colors signify different modes).

A. Simulated Signal

Firstly, we consider the synthetic signal, as follows:

s(t) = m1(t) +m2(t), (12)

with
m1(t) = cos(2π(250t− 200

7π
sin(7πt))), (13)

m2(t) = cos(2π(250t+
200

7π
sin(7πt))), (14)

where the sampling frequency fs = 1024 Hz and the time
duration is [0, 1] s. The IFs of two modes exhibit oscillatory
patterns and intersect at multiple time points (see Fig. 3 (left)).

The parameters for each decomposition algorithm involved
in the comparison are set as follows. Both NCMD and ICCD
utilize the widely used IF estimation method RPRG [29],
which is capable of estimating crossover IFs in the 2D TF
plane. To ensure fairness, NCMD employs the same noise
estimation as 3D-SRMD. In 3D-SRMD, we set α = L/80,
N = 5000, λ = fs/100, and the maximum iteration count
for the SPGL1 algorithm is set to 1000. In ICCD, a wider
filter bandwidth should be chosen to improve the estimation
accuracy of nonlinear oscillatory modes. Thus, we set BW =
fs/10, and the noise parameter is set to the default value of 5.
Similarly, in NCMD, it is necessary to choose a larger penalty
parameter to obtain a wider filter bandwidth, here set to 1e−2.
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Fig. 5. Analysis results (blue: estimated modes; black: estimation errors) for
the simulated signal by (first row) ICCD, (second row) NCMD, (third row)
SRMD, (last row) 3D-SRMD. Note that the average SNR of the two signals
by each method is 24.39 dB, 30.89 dB, 0.54 dB, and 55.70 dB, respectively.

Firstly, we evaluated the performance of each algorithm in a
noise-free case. The decomposition results are shown in Fig. 4
and Fig. 5. Due to the influence of oscillating IFs, ICCD expe-
riences errors at crossover points and edges. NCMD exhibits
some errors at the crossover point caused by the estimated
errors in IFs. SRMD reconstructs entirely erroneous modes,
demonstrating its ineffectiveness in handling crossover IFs.
Finally, the introduction of CR parameter enables 3D-SRMD
to successfully decompose crossover modes, presenting the
best decomposition performance among these methods.
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Fig. 6. The whales’ whistles and the decomposition results of the 3D-SRMD
in STFT plane: (top left) the real signal; (top right) sum of the estimated
modes; (bottom) the crossover frequency components separation achieved by
3D-SRMD.

To comprehensively evaluate the methods’ performance,
we also evaluated these methods under different noise lev-
els. The mean output signal-to-noise ratio (SNR) is in-
troduced to measure the accuracy of mode reconstruction
as 1

K

∑K
k=1 20 log10

(
‖mk(t)‖2

‖m̂k(t)−mk(t)‖2

)
. Note that the exper-
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iments are repeated 100 times at each noise level to obtain
average results. As depicted in Fig. 3 (right), 3D-SRMD
exhibits superior performance at each noise level.

B. Real-World Signal

To demonstrate the effectiveness of 3D-SRMD, a real-world
signal from the whistles of the melon-headed whales [30] is
employed in this section. The sampling frequency is 48 kHz,
while the time duration is 0.04 s. The signal contains crossover
frequency components and is contaminated by background
noise (see in Fig. 6 (top left)). As exhibited in Fig. 6, 3D-
SRMD successfully separate the modes with crossover IFs and
significantly reduces the background noise, which indicates the
potential of our method in practical applications.

V. CONCLUSION

This paper has proposed an advanced mode decomposition
method called 3D-SRMD. By lifting the random feature space
to the 3D TFC space, our method is capable of disentangling
modes with crossover IFs. Furthermore, a concentrated dis-
tribution of random features is also developed to enhance
separation accuracy and eliminate the need for clustering
algorithms. Finally, 3D-SRMD demonstrates promising perfor-
mance in both simulated and real-world signals. In the future,
we will try to apply the 3D-SRMD in various areas, e.g.,
radar and biomedical systems. We will also aim to explore
model compression techniques to optimize the computational
efficiency of 3D-SRMD, enabling its adaptation to large-scale,
real-time applications.
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