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Abstract—A new spectral correlation density (SCD) estimator
is proposed. It exploits the chirp zeta transform algorithm in
a modified version of the strip spectral correlation analyzer
(SSCA) and is referred to as zoom SSCA. It provides an
estimate of the SCD in the desired cycle- and spectral-frequency
rectangular region without computing the SCD in the whole
domain. The cycle- and spectral-frequency analysis intervals
can be independently selected and the cycle- and spectral-
frequency resolution is constant in the whole analysis region.
As an example of application, the cyclic spectral analysis of a
covert weak communication signal in the presence of strong noise
and interference is carried out.

Index Terms—cyclostationarity, spectral correlation, cyclic
spectrum estimation, strip spectral correlation analyzer

I. INTRODUCTION

Spectral correlation density (SCD) or cyclic spectrum esti-
mation is exploited in cyclostationarity-based signal process-
ing algorithms in communications, radar/sonar, circuits and
control, acoustics and mechanics, econometrics, climatology,
biology, and astrophysics [9, Chap. 10].

These algorithms can be suitably implemented due to the
existence of consistent estimators of the cyclic statistical
functions [7, Chap. 11], [9, Chap. 5]. In particular, for the
SCD estimation, the time- and frequency-smoothed cyclic
periodograms have been proposed. Efficient implementations
of these estimators are the fast Fourier transform (FFT)
accumulation method (FAM) and the strip spectral correlation
analyzer (SSCA) [4]. Parallel architectures for FAM and SSCA
algorithms are presented in [5], [11].

Fast or low-complexity algorithms for computing the SCD
in the whole cycle- and spectral-frequency domain have also
been presented in [8], [12], [13], [14] in the context of radio-
frequency spectrum sensing. In [1] and [3], in the context of
mechanical engineering, estimators have been presented with
some constraints on the maximum observable cycle frequency.

In electromagnetic-spectrum monitoring in a non-
cooperative  scenario, 1in order to discover covert
communication signals [2], [6] in the presence of strong
noise and interfering signals, an estimate of the SCD must be
performed in appropriate intervals of cycle frequencies o and
spectral frequencies v where significant cyclic features of the
covert signal are expected to be found.

In the present paper, a versatile and memory-parsimonious
SCD analyzer is proposed, which is referred to as zoom strip
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spectral correlation analyzer (ZSSCA), aimed at estimating the
SCD in a desired rectangular region of the («, v) domain. The
chirp zeta transform (CZT) [10] is exploited in a modified
version of the originally proposed SSCA [4] to zoom in the
cycle-frequency domain. The modification here proposed con-
sists in considering strips in the («, ) domain that are parallel
to the spectral-frequency axis rather than to diagonal lines.
Due to such a modification, the cycle-frequency and spectral-
frequency search intervals can be chosen independently, with-
out any constraint, and the cycle-frequency resolution is con-
stant for all the points on the grid on the analysis rectangular
region. The zoom in the spectral-frequency domain is obtained
by channelization, that is, by passing the input signal through
band-pass filters whose bandwidth is equal to the desired
spectral-frequency resolution. The central frequency of the
filters ranges in the spectral-frequency analysis interval with a
spacing equal to the spectral-frequency resolution.

The ZSSCA acts as a magnifying glass in the desired region
of the (o, ) domain without requiring the estimation of the
SCD in the whole domain, with an advantage in terms of
computational and memory costs. The advantage is significant
when large data-record lengths are required for cyclic spectral
analysis of weak signals in order to counteract the cycle
leakage phenomenon [7, Chap. 13], [9, Secs. 5.3.4, 9.7] that
is, the leakage at each cycle frequency coming from cyclic
features of the signal-of-interest itself, the noise, and other
interfering signals.

A zoom FAM algorithm based on the CZT is presented in
[15] where, unlike the proposed ZSSCA, the points on the grid
in the (v, v) plane must respect several constraints and, as the
original FAM, the cycle-frequency resolution is not constant
in the analyzed region [5], [11].

As an example of application, the cyclic spectral analysis of
a weak covert communication signal in the presence of strong
noise and interference is carried out.

The paper is organized as follows. In Section II, notation
and definitions on cyclic spectral analysis are introduced. The
proposed ZSSCA is presented in Section III. Numerical results
are shown in Section IV and conclusions are drawn in Section
V.
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II. CYCLIC SPECTRAL ANALYSIS

A discrete-time complex-valued signal x(n) is said to be
almost-cyclostationary in the wide-sense if its mean, autocor-
relation, and conjugate autocorrelation functions are almost-
periodic functions of time. Specifically, for the (conjugate)
autocorrelation function one has

E{ (n+m) } ZRxw()
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2.1)

where A is a countable set of possibly incommensurate fre-
quencies, named cycle frequencies, and the Fourier coefficients
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are referred to as (conjugate) cyclic autocorrelation functions
[7, Chap. 10], [9, Chap. 1]. In (2.1) and (2.2), (%) denotes
an optional complex conjugation which is present for the
autocorrelation and is absent for the conjugate autocorrelation.
The operator E{-} has twofold interpretation. It is the statis-
tical expectation in the classical stochastic approach where
z(n) is modeled as stochastic process and is the almost-
periodic component extraction operator in the fraction-of-time
probability approach where x(n) is modeled as single function
of time [7, Chap. 15], [9, Chap. 2]. In the latter case, E{-} is
redundant in (2.2).
The Fourier transform
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is referred to as the (conjugate) cyclic spectrum or SCD.
It is the correlation between spectral components of z(n)
whose frequency separation is equal to « [7, Chap. 10], [9,
Sec. 1.2.1.2].

The (conjugate) SCD can be estimated by the frequency-
smoothed (conjugate) cyclic periodogram

S(N,Au)
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n=0

Ha,(v) is a smoothing window with bandwidth Av, and
®, denotes convolution in the variable v. In (2.4), (-) is an
optional minus sign linked to (*). Under mild assumptions,
the frequency-smoothed (conjugate) cyclic periodogram is
consistent when N — oo and Av — 0 with NAy — oo.
In practice, the condition Av > 1/N must be satisfied for
estimate reliability [7, Chap. 11, Sec. B], [9, Sec. 5.4.4]

III. ZooM CYCLIC SPECTRAL ANALYSIS

In this section, the proposed zoom strip spectral correlation
analyzer is presented.

A. The Chirp Zeta Transform

The CZT [10] allows one to efficiently compute the zeta
transform of a signal over a set of points in the complex plane
by exploiting the FFT.

Let us consider the finite-length sequence s(n), n =

0,1,..., N — 1. By letting
wE2Aw*  k=01,...,K-1, AeC, weC
3.1
and using the identity nk = [n? + k* — (k — n)?]/2, the

following expression for the zeta transform of s(n) at the
points zj, of the complex plane is obtained

S(ak) =

N-1
,wk2/2 Z [s(n) AT
n=0
The function S(zy) is called the CZT of s(n) [10]. Since the
sum in the right-hand side of (3.2) is a convolution, the CZT
S(zk) is efficiently implemented by FFT.
By taking

A= ej27roza

w”z/z} w2 (39)

w = 6—j27r(ab—o¢a)/K

(3.3)

the points z;, lie on an arc of the unit circle and S(z), which
in the following is denoted as CZT[s(n)](ax), is the Fourier
transform of s(n) in the frequency interval [cv,,cp) at the
frequency bins

ap=ag+k(w—a)/K, k=0,...,K—-1. (34

This property is exploited in the ZSSCA algorithm to zoom
the SCD estimate in the cycle-frequency domain.

B. Zoom SSCA

Let hpr(n) be an M-duration, even data-tapering window.
Thus, the sequence hjps(n) e/2™™ is the impulse response
function of a band-pass filter with central frequency v and
bandwidth Av = 1/M.

The signal xz(n) is channelized into narrow-band com-
ponents centered at frequencies v with bandwidth Av by
computing the convolution

M/2—1

2

=—M/2

Xay(n,v) 2 [har(m) €2™™] 2(n —m) (3.5)

where, for the sake of simplicity, M is assumed to be even.
Let g(n) be a real-valued data-tapering window. By com-
puting the CZT of Xa,(n,v) *)(n) g(n) with parameters
(3.3) one obtains
1 ~
= CZT [Xau(nv) 29 (n) ()| ()
M/2—1

> gt

m=—M/2

2™ (n) g(n)] (ak)

ej27'r1/m

— CZT z(n —m)

2678



M/2—1

>

m'=—M/2

: % CZT |z(n+m') 2™ (n) g(n) | ()

M/2—1
= Z h]u(m/) 67j27rum’ RQ(CJZ()*) (Olk,m/) ) (3.6)
m/=—M/2
In (3.6),
R;]Z()*) (O‘kv m)
N—-1
A 1 (*) —j2Tarn
N 7;) z(n +m) ' (n) g(n) e 7= (3.7)

with ay, in (3.4), is the discrete-time (conjugate) cyclic correlo-
gram with data-tapering window ¢g(n). In (3.6), in the second
equality, the variable change m’ = —m is made and in the
third equality hpr(m’) = hpr(—m') is used since hps(+) is an
even sequence.

The (conjugate) cyclic correlogram (3.7) is the inverse
Fourier transform of the (conjugate) cyclic periodogram [7,
Chap. 11, Sec. A], [9, Lemma 2.39]

190, (01,0) 2 S X () XX () (s — )

(3.8)

A

where X, n(v) = Xpy(v) ® G(v) is the finite Fourier
transform of the tapered signal z(n) g(n), n=10,...,N —1,
with G(v) Fourier transform of g(n).

Denoting by Ha,(v) the Fourier transform of hps(n)
and using the dual of the convolution theorem for Fourier
transforms, from (3.6) one has (Fig. 1)

%CZT Xav(n,v) 2™ (n) g(n)| (ax)

_

zx(*)

_ S(N,AV)

zx(*)

(ag,v) @ Hpa,(v)

(g, v) (3.9)

with ay, in (3.4). The right-hand side of (3.9) is the frequency-
smoothed (conjugate) cyclic periodogram and the left-hand
side is the proposed ZSSCA.

The harmonic response Ha, () is low-pass with bandwidth
Av = 1/M. Thus, Av is the spectral-frequency resolution. If
the spectral-frequency interval of interest is [V, 1), then the
spectral-frequency samples

vp=ve+pAr, p=0,1,...,P—-1

with P = [(vpy — va)/Av], are sufficient to describe
S(NaAV)
ol (ks V).

For the frequency-smoothed (conjugate) cyclic periodogram
computed on a data-record length N, the cycle-frequency
resolution is Ao = 1/N [7, Chap. 11, Sec. B], [9, Sec. 5.2.3].
Thus, the value of K to not skip any cycle frequency in the
cycle frequency interval [, ;) must be large enough so that
the cycle-frequency step (ap — «)/K of the CZT in (3.9)
is smaller than the cycle-frequency resolution Ao = 1/N.

Larger values of K provide a better interpolation in the cycle-
frequency domain.

When o, = —ap, = 1/2 and v, = —v, = 1/2, the ZSSCA
covers the whole cycle- and spectral-frequency domain and
reduces to a modified version of the originally proposed SSCA
[4], [5], [11]. The modification consists in considering strips
in the («,v)-plane parallel to the v axis rather than parallel
to the diagonal line « = —2v. Such a modification is due
to the adopted asymmetric definition of (conjugate) cyclic
autocorrelation (2.2) and cyclic spectrum (2.3) rather than the
symmetric one [9, Sec. 1.2.1]. Thus, the principal domain in
the («, v)-plane is a square rather than a diamond as in [4],
[5], [11]. As a consequence, for the zoom SSCA proposed
in this paper, the bins of the grid in the («,v)-plane can be
chosen independently along « and v, only accounting for the
required cycle- and spectral-frequency resolutions which are
constant in the whole analysis domain.

In contrast, for the zoom FAM [15], the points on the
grid must respect several constraints in order to obtain the
desired point spacing and the spectral-frequency resolution is
not constant similarly to the original FAM.

C. Memory Occupancy

The matrix with the SCD estimates by the ZSSCA with
cycle-frequency resolution Ao = 1/N and spectral-frequency
resolution Av at points (ay,vp), k = 0,1,...,K — 1 and
p=20,1,..., P —1, has size K x P. In contrast, the matrix
with the SCD estimates by the SSCA with the same cycle- and
spectral-frequency resolution in the whole («, v) domain has
size N x N’, where N’ = | Av|. Since in practical applications
K <« N and P < N/, the proposed ZSSCA provides
a significant computational advantage with respect to first
performing the SCD estimation in the whole («,r) domain
and then extracting the desired portion of SCD estimate. In
addition, when (o — o) < 1, a finer interpolation in the
cycle-frequency domain can be obtained by increasing the
value of K in the ZSSCA rather than performing a zero
padding as it would be required in the SSCA with consequent
increase of memory occupancy and computational cost. Such
a computationally-cheap finer interpolation allows one to get
a better accuracy in cycle frequency estimation.

IV. NUMERICAL RESULTS

In this section, the cyclic spectral analysis of a weak
covert direct-sequence spread-spectrum (DSSS) signal in the
presence of a strong pulse-amplitude modulated (PAM) signal
and circular white Gaussian noise (CWGN) (white in the band
[—fs/2, fs/2], with fs = 1/T sampling frequency) is carried
out.

The covert signal is a short-code DSSS signal with binary
white modulating sequence, binary spreading code with N, =
32 chip per bit, and chip period T, = 77T, which modulates
a carrier residual at frequency v, fs, with v. = 0.00001.
It exhibits cyclostationarity at cycle frequencies k/(N.T.),
with k£ € Z [9, Sec. 7.4] and conjugate cyclostationarity at
conjugate cycle frequencies k/(N.T.) + 2v, fs, with k € Z
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Fig. 1: Zoom strip spectral correlation analyzer

[9, Example 3.11]. The discrete-time sampled DSSS signal
is almost cyclostationary with cycle frequencies kT /(N.T.),
k=0,1,---,|NT./Ts] — 1 [9, Sec. 3.6.2] and conjugate
cycle frequencies (kTs/(N:1I.) + 2v,) modulo 1, k € Z [9,
Corollary 3.18]. The PAM signal has binary white modulating
sequence, full duty cycle rectangular pulse, and bit period
T, = 16 Ty. It exhibits cyclostationarity and conjugate cyclo-
stationarity at cycle frequencies k/T),, with k € Z [9, Sec. 7.3].
The discrete-time sampled PAM signal is cyclostationary with
(conjugate) cycle frequencies kT /1), k = 0,1,--- ,T,/Ts—1
[9, Sec. 3.6.2].

Let Ppanm, Ppsss, and Pcwgn be the average powers of the
PAM, DSSS, and CWGN signals, respectively. The signal-to-
noise ratio (SNR), defined as SNR = 10 log(Ppsss/Pcwan),
is —8 dB, and the signal-to-interference ratio (SIR), defined
as SIR = 10 log(Ppsss/Pram), is =8 dB. The numerical
bandwidths of the PAM and DSSS signals are T /T, = 1/16
and Ts/T. = 1/7, respectively. Therefore, the power spectral
density of the DSSS signal is completely covert by that of the
PAM and the CWGN signals (Fig. 2).

——PAM
' DSSS |
----CWGN

Fig. 2: Power spectral densities of the PAM, covert DSSS, and
CWGN signals.

The cyclic spectral analysis of the discrete-time signal z(n)
is carried out by the SSCA and ZSSCA with optional complex
conjugation (*) present. The number of samples is N = 22!
and the spectral-frequency resolution is Av = 1/2° for both
analyzers.

The ZSSCA estimates the cyclic spectrum in the rectan-
gular region [ag,ap) X [Va, V) = [0.5 apsss, 3.5 apsss) X

[—0.1,0.1), where apgss = Ts/(N.T.) = 0.00446428571 is
the smallest (in magnitude) cycle frequency of the sampled
DSSS signal.

The strength of the SCD defined as

AN () £ /
T B

is also computed, where the integration interval B is the whole
frequency interval [—1/2,1/2) for the SSCA and is [vg, )
for the ZSSCA.

In Fig. 3, (top) the magnitude of the SCD estimate by the
SSCA in the whole (o, v) domain [—1/2,1/2) x [-1/2,1/2)
and (bottom) its strength are reported. The SCD of the PAM
signal and a floor for v = 0 corresponding to the CWGN are
evident. In contrast, cyclic features of the covert DSSS signal
cannot be recognized.

In Fig. 4, (top) the magnitude of the SCD estimate by the
ZSSCA in the rectangular region [ag, ap) X [vg,vp) Of the
(r, v) domain and (bottom) its strength are reported. The zoom
in the cycle frequency domain highlights the SCD of the DSSS
signal at the cycle frequencies k apgss, k = 1,2, 3.

Both SSCA and ZSSCA have cycle frequency resolution
1/N ~4.77-107". For the SSCA, the cycle-frequency step is
coincident with the cycle-frequency resolution, and the number
of channels is N’ = |1/Av| = 2. Thus, the size of the SCD
matrix of the SSCA is N x N’ = 221 x 29 ~ 10? elements. For
the ZSSCA, K = |4N(ap — )] = [12Napsss | = 112347
is such that the cycle-frequency step is 1/(4N). The number
of channels is P = | (v, — v,)/Av] = 102. Thus, the size of
the SCD matrix for the ZSSCA is K x P = 112347 x 102 ~
1.14-107.

Thus, if one is only interested in the cyclic spectral analysis
in the rectangular region [, ap) X [Va, V), it would be very
impractical to first estimate the SCD matrix in the whole
(v, v) domain and then extract from this matrix the sub-matrix
corresponding to the desired region.

The size of the SCD matrix of the ZSSCA is two orders of
magnitude smaller than that of the SCD matrix obtained by the
SSCA, and, moreover, the cycle-frequency step is 1/4 of that
of the SSCA. In order to obtain the same cycle-frequency step

2
SNAD (0, )| dv 4.1)
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Fig. 3: SSCA: (Top) magnitude of the SCD estimate in the whole
(o, v) domain [—1/2,1/2) x [—-1/2,1/2); (Bottom) strength of the
SCD estimate.

with the SSCA, a zero padding factor of 4 should be adopted
increasing of a factor 4 the size of the SCD matrix.

V. CONCLUSION

The novel zoom strip spectral correlation analyzer is pro-
posed to estimate the SCD in a selected rectangular region of
the cycle- and spectral-frequency plane. It exploits the CZT
in a modified version of the SSCA in order to zoom in the
cycle-frequency domain. The proposed analyzer has constant
cycle- and spectral-frequency resolution. It is shown to be very
parsimonious in memory occupancy with respect to extracting
the desired estimated SCD sub-matrix from the SCD matrix
estimated on the whole cycle- and spectral-frequency domain.
As an example of application, the cyclic spectral analysis of
a weak covert DSSS signal in the presence of a strong PAM
signal and CWGN is carried out.
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