
Enhancing Fundamental Frequency Estimation of
Multi-Harmonic Signals using Spectral Amplitude

Knowledge
Daniel Guger∗†§, Oliver Lang∗†§, Stefan Schuster‡, Stefan Scheiblhofer‡,

Alexander Haberl‡, Clemens Staudinger‡, Lukas Schiefermüller‡, and Mario Huemer∗
∗Institute of Signal Processing, Johannes Kepler University Linz, Austria

†Christian Doppler Laboratory for Steel Industry Signal Processing and Machine Learning, Austria
‡voestalpine Stahl GmbH, Linz, Austria

§The authors contributed equally to this work.

Abstract—Fundamental frequency estimation of periodic signals
constitutes an important topic in the signal processing domain,
with a considerable number of applications in audio, sonar, or
industrial purposes like condition monitoring, etc. While promi-
nent methods like the maximum likelihood (ML) fundamental
frequency estimator offer asymptotically efficient solutions, they
neglect certain prior knowledge that may be available. This work
considers prior knowledge of the spectral amplitudes that can
be used to enhance the ML estimator. We therefore derive a
ML fundamental frequency estimator that beneficially utilizes
this knowledge. Monte-Carlo simulations emphasize the improved
performance of the proposed estimator compared to the classical
ML fundamental frequency estimator, for cases where the spectral
amplitudes are perfectly or even only approximately known.

Index Terms—Fundamental frequency estimation, CRLB,
known spectral amplitudes, maximum likelihood

I. INTRODUCTION

Periodic signals occur, e.g., in audio [1], sonar [2], and in
industrial applications like condition monitoring [3], etc. These
signals can be modeled as a weighted sum of sinusoids, whose
frequencies are integer multiples of a common fundamental
frequency ψ0, and are often called harmonic. A commonly
used representation is the multi-harmonic signal model

s[n] =

L∑
ℓ=1

Aℓ cos(2πℓψ0n+ ϕℓ), 0 ≤ n ≤ N − 1, (1)

with number of measurements N , known model order L,
unknown (normalized) fundamental frequency ψ0, spectral
amplitudes Aℓ > 0, and phases ϕℓ ∈ [−π, π).

In many applications, the fundamental frequency of harmonic
signals is of particular interest, and numerous fundamental
frequency estimators have been developed [4], including non-
parametric methods [5]–[8], subspace-based methods [9], [10],
and Bayesian methods [11], [12]. Model-based fundamental
frequency estimators include the asymptotically efficient maxi-
mum likelihood (ML) fundamental frequency estimator [13]
and a computationally efficient approximation of it called
the approximate nonlinear least squares (ANLS) fundamental
frequency estimator [4, p. 42ff.]. Interestingly, the derivations of
both estimators have, as an embedded step, the ML estimation

of the spectral amplitudes Aℓ, since they are usually unknown
and need to be estimated to derive the ML cost function.

However, in some applications, the spectral amplitudes may
not be completely unknown but rather (approximately) known
up to a constant scaling factor, i.e., Aℓ = V Āℓ with known
Āℓ and unknown scaling factor V . A prominent case is when
the input of a known linear time-invariant (LTI) system is
a Dirac-comb-like signal such that the periodic signal s[n]
consists of scaled pulses that reflect the system’s impulse
response. An ML fundamental frequency estimator utilizing
this knowledge does not exist in literature to the best of the
authors’ knowledge. Related literature includes [14], where a
quite similar scenario was investigated. The resulting estimators
are, however, different. Knowledge that the scaling factor is
common to all linear parameters has not been incorporated,
as we will show. Another related literature is [12], where
the authors mentioned that the correlation structure of the
amplitudes of the harmonics can be used as prior information
in their Bayesian fundamental frequency estimation framework.
A related approach was investigated in [11], where every
amplitude was rewritten as a product of a known weight and
a time-varying part that needs to be tracked within a Bayesian
framework. The weights can be interpreted as prior knowledge
on the spectral components and are chosen such that the time-
varying parts are on a similar scale. In [15], [16], it was shown
that the asymptotic (N ≫ 1/(2πψ0)) Cramér-Rao lower bound
(CRLB) for the case of additive white Gaussian noise (AWGN)
is independent of whether the spectral amplitudes Aℓ are known
or not. The asymptotic CRLB for both cases is

var(ψ̂0) ≥
1

(2π)2
12

N3PSNR
, (2)

with the pseudo signal-to-noise ratio (PSNR) defined as
PSNR =

∑L
ℓ=1(ℓ

2A2
ℓ)/(2σ

2). In [17], an estimator similar
to the ANLS fundamental frequency estimator is used on
audio signals. This estimator weights the spectral components
according to 0.84ℓ−1 to account for the tendency of higher-
order harmonics having less power in speech signals than lower-
order harmonics. In [1], the knowledge of the smoothness of the
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spectral amplitudes is utilized to separate two speech signals
with overlapping spectral components. In [18], a rather ad-hoc
estimation procedure incorporating smoothing and splitting of
the time-series has been proposed.

In this work, we consider the case where the spectral
amplitudes follow Aℓ = V Āℓ with known Āℓ. We first
derive the ML fundamental frequency estimator under this
assumption, and propose a computationally efficient modified
ANLS fundamental frequency estimator that can be efficiently
implemented using the fast Fourier transformation (FFT). It
will turn out that the proposed modified ANLS fundamental
frequency estimator performs a weighting similar to the
approach in [17], but with known scaled spectral amplitudes
Āℓ.

The proposed fundamental frequency estimators incorporat-
ing Āℓ achieve better mean squared error (MSE) performances
closer to the CRLB in the moderate- and low-signal-to-noise
ratio (SNR) region. Moreover, they feature a better threshold
SNR value [19], [20] compared to all competitive estimators.

II. STANDARD ML AND ANLS ESTIMATORS

In the following, the standard estimators without knowledge
of Aℓ are revisited, which will serve as a performance
benchmark later on. The proposed estimators incorporating
knowledge of Aℓ are derived in the follow-up section.

The real-valued, multi-harmonic signal in (1) is considered.
Using αℓ = Aℓ cos(ϕℓ) and βℓ = −Aℓ sin(ϕℓ), this model can
be expanded to

s[n] =

L∑
ℓ=1

αℓ cos(2πℓψ0n) + βℓ sin(2πℓψ0n), (3)

such that the fundamental frequency ψ0 is the only nonlinear
parameter in the signal model. We assume N measurements
are given by

x[n] = s[n] + w[n] (4)

with w[n] ∼ N (0, σ2) being AWGN.
Assembling all linear parameters αℓ and βℓ to vectors αT =

[α1, . . . , αL] and βT = [β1, . . . , βL], then the measurement
vector xT = [x[0], . . . , x[N − 1]] can be described as

x = H(ψ0)η +w (5)

with w ∼ N (0, σ2IN ), IN being the identity matrix of size
N ×N , the linear parameters ηT =

[
αT βT

]
, and with

HT (ψ0) =



cos(2π1ψ00) . . . cos(2π1ψ0(N − 1))
...

...
...

cos(2πLψ00) . . . cos(2πLψ0(N − 1))
sin(2π1ψ00) . . . sin(2π1ψ0(N − 1))

...
...

...
sin(2πLψ00) . . . sin(2πLψ0(N − 1))


.

(6)
For the considered case of AWGN with equal noise variances,

the position of the maximum of the likelihood function

coincides with the position of the minimum of the least squares
(LS) cost function [13], [21, p. 71ff.] and is given by

ψ̂0 = argmin
ψ0

(x−H(ψ0)η)
T
(x−H(ψ0)η) . (7)

Solving it as a separable LS problem [22, p. 254ff.], the linear
parameters are estimated by

η̂ =
(
HT (ψ0)H(ψ0)

)−1
HT (ψ0)x, (8)

which can be inserted in (7), yielding the final ML estimator
for ψ0 without knowledge of the spectral amplitudes Aℓ

ψ̂0 = argmax
ψ0

xTH(ψ0)
(
HT (ψ0)H(ψ0)

)−1
HT (ψ0)x. (9)

The estimator’s cost function is usually maximized using a
grid search.

A simplification can be made if 1/(2N) ≪ ψ0 [23, Prob-
lem 4.21], and if Lψ0 ≪ 1/2. Then, the matrix inversion
can be approximated by

(
HT (ψ0)H(ψ0)

)−1 ≈ 2/NIN [21,
Algorithm 12.3]. Hence, an approximate ML fundamental fre-
quency estimator, the ANLS for unknown spectral amplitudes
Aℓ can be obtained according to

ψ̂0 = argmax
ψ0

2

N

L∑
ℓ=1

|X(ℓψ0)|2 , (10)

where X(ψ) is the windowed discrete-time Fourier transfor-
mation (DTFT) of x[n] given by

X(ψ) =

N−1∑
n=0

x[n] exp (−j2πψn) . (11)

The windowed DTFT can be efficiently evaluated using the
FFT [24]. The corresponding CRLB is given by (2).

III. DERIVATION OF THE PROPOSED ESTIMATORS

As already mentioned, assuming the spectral amplitudes
Aℓ were completely known leads to the same asymptotic
CRLB as in (2) [15]. The asymptotic (N → ∞) performance
of the ML estimator can therefore not be improved by
incorporating knowledge of the spectral amplitudes. However,
it will be shown that the performance in low- and moderate-
SNR regions as well as the threshold SNR value benefit from
such knowledge.

In the following, we assume that the spectral amplitudes are
known up to a constant scaling factor Aℓ = V Āℓ with known
Āℓ > 0 and unknown scaling factor V > 0. This leads to the
model

x[n] = V

L∑
ℓ=1

Āℓ cos(2πℓψ0n+ ϕℓ) + w[n], (12)

where w[n] ∼ N (0, σ2) is AWGN.
Let’s fix ψ0 for a moment. We will first discuss estimators

for ϕℓ and V for a given ψ0, and will later on find ψ0 via a
grid search.

Assuming that the cosines in (12) are approxi-
mately orthogonal for different values of ℓ, (i.e.,
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H(ψ0) =


cos(2π1ψ00 + ϕ̂1) cos(2π2ψ00 + ϕ̂2) . . . cos(2πLψ00 + ϕ̂L)

cos(2π1ψ01 + ϕ̂1) cos(2π2ψ01 + ϕ̂2) . . . cos(2πLψ01 + ϕ̂L)
...

...
...

cos(2π1ψ0(N − 1) + ϕ̂1) cos(2π2ψ0(N − 1) + ϕ̂2) . . . cos(2πLψ0(N − 1) + ϕ̂L)

 (19)

(
HT (ψ0)H(ψ0)

)−1 ≈ 2/NIN ), one can show that
the approximate ML estimator for ϕℓ is given by

ϕ̂ℓ = − atan2

(
N−1∑
n=0

x[n] sin(2πℓψ0n),

N−1∑
n=0

x[n] cos(2πℓψ0n)

)
. (13)

The proof is similar to [22, p. 167ff.] and is omitted in this
work. We note that a symmetric sampling interval [25], [26]
may improve the estimation performance of ϕ̂ℓ, however, for
the sake of simplicity, we continue with (13).

Next, the phases ϕℓ in (12) are replaced by their estimates
in (13), leading to the vector notation

x = V h(ψ0) +w, (14)

with w ∼ N (0, σ2IN ) and

h(ψ0) =



∑L
ℓ=1 Āℓ cos(2πℓψ00 + ϕ̂ℓ)∑L
ℓ=1 Āℓ cos(2πℓψ01 + ϕ̂ℓ)∑L
ℓ=1 Āℓ cos(2πℓψ02 + ϕ̂ℓ)

...∑L
ℓ=1 Āℓ cos(2πℓψ0(N − 1) + ϕ̂ℓ)

 . (15)

Then, the approximate ML estimator for V is given by

V̂ =
(
hT (ψ0)h(ψ0)

)−1
hT (ψ0)x. (16)

Inserting this result into the model in (14), and using the log-
likelihood function for performing a grid search for estimating
ψ0 leads to

ψ̂0 = argmax
ψ0

xTh(ψ0)
(
hT (ψ0)h(ψ0)

)−1
hT (ψ0)x. (17)

Due to several assumptions made during the derivation, this
result is only an approximate ML estimator for the fundamental
frequency ψ0. However, we refer to this estimator simply as
the ML estimator in the remainder of this work.

Further simplifications can be made when rewriting the
vector h(ψ0) as

h(ψ0) = H(ψ0)a, (18)

where H(ψ0) is defined according to (19) and
aT =

[
Ā1 Ā2 . . . ĀL

]
. Combining (18) with the

ML estimator in (17) produces

ψ̂0 =

argmax
ψ0

xTH(ψ0)a
(
aTHT (ψ0)H(ψ0)a

)−1
aTHT (ψ0)x.

(20)

Since HT (ψ0)H(ψ0) is approximately a scaled identity matrix,
one obtains

ψ̂0 ≈ argmax
ψ0

xTH(ψ0)a
(
aTa

)−1
aTHT (ψ0)x. (21)

The term aTa is a scalar that does not depend on ψ0.
Dismissing it leads to

ψ̂0 ≈ argmax
ψ0

xTH(ψ0)aa
THT (ψ0)x (22)

≈ argmax
ψ0

|aTHT (ψ0)x|2. (23)

The squaring operation does not change the position of the
maximum and can be dismissed. Moreover, it can be shown that
if HT (ψ0)x is evaluated at the true fundamental frequency,
for high enough SNR, and if the estimates ϕ̂ℓ are close to
the true phases ϕℓ, the term HT (ψ0)x would approximately
coincide with the magnitude of the windowed DTFT |X(ψ)|
evaluated at the frequencies ψ = ℓψ0 with ℓ = 1, . . . , L. Using
the windowed DTFT instead due to its simpler computation,
and replacing the vector notation by a summation results in

ψ̂0 ≈ argmax
ψ0

∣∣∣∣∣
L∑
ℓ=1

Āℓ |X(ℓψ0)|

∣∣∣∣∣ . (24)

Since both arguments in the sum are real-valued and positive,
the outermost magnitude operator can be dismissed, leading
to the final ANLS for known spectral amplitudes Āℓ is finally
given by

ψ̂0 = argmax
ψ0

L∑
ℓ=1

Āℓ|X(ℓψ0)|. (25)

This estimator weights the spectral signal components |X(ℓψ0)|
with the known spectral amplitudes Āℓ.

It is also interesting to compare this result to a result in
[27] for the case of weak signal in colored noise. There
a similar weighting is performed with the coefficients of a
prewhitener based on estimated autoregressive (AR) noise
process parameters.

IV. SIMULATION RESULTS

In the following, Monte-Carlo simulations are presented
for the ML fundamental frequency estimators and the ANLS
fundamental frequency estimators for both cases, unknown
(UA) and known spectral amplitudes Āℓ (KA). Moreover, the
performance degradation when Āℓ are subject to an error (AA)
is empirically analyzed.

Our harmonic test signal is realized as a periodic repetition
of Hann windows

wH[n] =
1

2

(
1− cos

(
2πn

H

))
rectH [n] (26)
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of length H , where the rectangular window is given by

rectH [n] =

{
1, 0 ≤ n ≤ H − 1,

0, otherwise.
(27)

The so-called Hann-comb of frequency ψ0 = 1/P follows as

sH[n] = wH[n] ∗
∞∑

p=−∞
δ[n− pP ], 0 ≤ n ≤ N − 1, (28)

where δ[n] is the discrete Dirac delta function, and where P
is the integer-valued period. We choose a signal length of
N = 211 = 2048 and a pulse width of H = 10 samples. For
this signal model, a closed-form expression for the complex
spectral amplitudes Aℓ can be shown to be

Aℓ =
1

P

[
1

sin
(
πℓ
P

) − 1

2

(
exp

(
j πH
)

sin
(
πℓ
P + π

H

) + exp
(
−j πH

)
sin
(
πℓ
P − π

H

))]

· sin
(
πHℓ

P

)
exp

(
−j
πℓ(H − 1)

P

)
.

(29)

The spectral amplitudes Aℓ then follow as the absolute value of
their complex counterparts in form of Aℓ = |Aℓ|. For efficient
computation of the windowed DTFT using the FFT, the mea-
surement signal x[n] is zero-padded to a length of 217 samples.
For each trial, the fundamental frequency ψ0 was sampled from
a uniform distribution ψ0 ∈ U(1.94·10−2, 3.06·10−2), and then
rounded such that the period P = 1/ψ0 is integer-valued. Fur-
thermore, the grid search in all simulations is limited to a search
range ψ̂0 ∈ Ψ = [ψmin, ψmax] = [1.81 · 10−2, 3.19 · 10−2],
chosen such that fractions or integer multiples of any frequency
within Ψ are excluded, i.e., 2ψmin > ψmax.

Fig. 1 compares the resulting MSE performances. Compared
to the ML and ANLS fundamental frequency estimators for
unknown spectral amplitudes, the proposed estimators are
closer to the CRLB and feature better MSE performances
by approximately a factor of 2.3 measured at a PSNR of
−3 dB, exemplarily. Moreover, the proposed estimators offer
a threshold PSNR improvement by about 1 dB.

Strictly speaking, the spectral amplitudes in (29) depend on
ψ0 = 1/P and have to be evaluated for each point of the grid
search. Fortunately, for moderate variations of the fundamental
frequency ψ0, the spectral amplitudes Aℓ only vary in a limited
manner as shown in Fig. 2. The spectral amplitudes of the first
20 harmonics ℓ ∈ {1, . . . , 20} are illustrated when varying the
fundamental frequency ψ0 by about ±10%. One can see that
the spectral amplitudes exhibit a quite similar shape despite
the different fundamental frequencies.

The proposed estimators were employed with erroneous
spectral amplitudes similar to those shown in Fig. 2. This was
done by choosing Āℓ = Aℓ|ψ=ψ̃ with ψ̃ randomly chosen from
ψ̃0 ∈ U(0.9ψ0, 1.1ψ0). The resulting MSE performances are
indicated by the dashed curves in Fig. 1. As can be seen, almost
no loss in MSE performance compared to the estimators having
information about the true spectral amplitudes is observed.
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PSNR (dB)

m
se
(ψ̂

0
)

ML (UA)
ML (KA)
ML (AA)
ANLS (UA)
ANLS (KA)
ANLS (AA)
CRLB

Fig. 1. Performance comparison of the ML and the ANLS fundamental
frequency estimators for unknown (UA), known (KA) and approximately
known spectral amplitudes Aℓ (AA).

The preservation of the improved performance concerning
both, lower threshold value and MSE performance closer to
the CRLB, even when only approximate knowledge of the
spectral amplitudes Āℓ is available, indicates the robustness of
the proposed estimators and increases their usability.

V. CONCLUSION

In this work, the task of fundamental frequency estimation
of a multi-harmonic (periodic) signal was investigated for the
special case when the spectral amplitudes of the harmonic
components are known up to a constant scaling factor. The
ML fundamental frequency estimator that incorporates this
knowledge as well as a computationally efficient approxima-
tion called the ANLS fundamental frequency estimator were
derived. Both proposed estimators were compared to their
counterparts that do not incorporate the information about the
spectral amplitudes. This comparison showed that, although
all estimators approach the same CRLB asymptotically, the

0 5 10 15 20
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Fig. 2. Spectral amplitudes Aℓ of the first ℓ ∈ {1, . . . , 20} harmonics
of the Hann-comb signal from (28) for different fundamental frequencies
ψ0 ∈ {2.22 · 10−2, 2.5 · 10−2, 2.77 · 10−2}.
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proposed estimators outperform their competitors in the low-
and moderate-PSNR region and offer a lower threshold value.
Finally, the case where the spectral amplitudes are subject to
an error was analyzed, indicating that for moderate errors no
severe performance degradation is observed.
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