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Abstract—Time series compression is an important topic,
enabling long signals to be represented in a small number
of parameters while denoising. Change-point detection methods
offer a relevant framework for tackling this task. In this paper, we
propose a new algorithm to approximate time series as piecewise
quadratic functions with continuity constraints. We propose a
dynamic programming recursion to compute the optimal solution
to this problem and an approximation algorithm with quadratic
complexity that locally discretizes the spaces of admissible values
at change points and initial first derivatives. We validate its
performance on signals from a real data set and on synthetic
signals.

Index Terms—change-point detection, compression, time series,
splines, dynamic programming.

I. INTRODUCTION

Time series are recorded in numerous fields of study, such
as medicine, sports, or manufacturing [1]. Time series data are
often noisy and can be very large, especially when collected
at high sampling frequencies. Compressing time series and
approximating them with parametric functions provides a rel-
evant solution for their study, allowing both the representation
of the information they contain with few parameters (that can
be used as input features for machine learning tasks) and the
ability to perform denoising.

One solution to compute this compression is to rely on
change point detection: given a time series {y;}Z_,, we search
avector 7 = {fp =1 <7 <--- < 7g =T} that partitions
the signal into K contiguous segments [7x, Tx+1) fif)l, that can
each be modelled with a parametric function. In the context of
splines, change points are also called knots. For K segments,
there exist (};:i) possible segmentations; therefore, a brute-
force approach quickly becomes impracticable. Numerous
efficient algorithms exist to estimate the number and locations
of changes accurately. The most efficient strategies rely on dy-
namic programming [2] or binary segmentation [3]. Different
parametric functions have been investigated in the literature:
piecewise constant [4] and piecewise linear functions [5] are
among the most popular. In many contexts, it makes sense
to exploit the dependencies that exist between successive seg-
ments. To this end, some authors have introduced continuity
constraints, notably for piecewise linear approximations [6],
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Fig. 1: Two examples from a motion capture dataset [1].
Our approximation is a quadratic spline; vertical dashed lines
indicate knot positions found by our method SPOP.

In this work, we consider the problem of piecewise
quadratic function approximation (continuous first derivative
and piecewise constant second derivative) with continuity
constraints. This problem is of practical use in the analysis
of smooth trajectory data, and can provide better compres-
sion/approximation than the widely studied piecewise linear
case. Our algorithm is available in an online repository’.

a) Related work: A well-known approach to approximate
smooth time series is ¢; trend filtering [8] which solves

T
min M [y — wll5 + ADully (1)
=
with D) the 3"9-discrete difference operator, || - ||; the ¢

norm and A > 0 a user-defined parameter. By design, ¢
trend filtering approximation is close to the observations and
has few jumps in the 2" derivative. However, because the /;
norm penalizes the absolute values of changes, solutions suffer
from over-segmentation: instead of a few significant changes,
several small ones are detected. This effect is also known as
the staircase effect in the Lasso regression [9]

For sparser results, the authors of [10] replace in (1) the ¢4
norm by the ¢y norm:

T
min 3l —wllf st ID@ulo <K@
=1
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The ¢; norm counts the number of non-zero elements. This
problem is untractable, so the authors describe an alternating
minimization scheme.

In [7], the authors fit a continuous piecewise linear function.
To simplify the problem, they constrain the approximating
functions to take values in a finite — typically small — set at
the change points. The proposed algorithm relies on this sim-
plification and dynamic programming. Our approach extends
this method to the piecewise quadratic setting.

b) Our contribution: We present a method for com-
pressing signals using a quadratic spline model. The knot
positions are estimated with a change point detection algo-
rithm. The complexity of the proposed approach is quadratic
in the number of observations. Compared to baselines, our
adaptive knot estimation procedure empirically produces better
approximations with fewer knots on synthetic and real-world
data.

II. PROBLEM STATEMENT

a) Signal model: Consider observations {y;}7 ; € RT
sampled at successive times ¢t = 1,2,...,7 modeled as:

yo = f7(t) + e,

where the ¢, ~ N(0,0?) are iid with variance o2 and f* :
[0,400) — R is an unknown smooth function to estimate.
The function f* follows a quadratic spline model, meaning
that:

t=1 T

geeey B

o there exist K* — 1 indices 77 and K* triples (aj, b}, ¢})
such that for ¢ € [1}, 77, ,):
fft)=apt* +oit+cx, k=0,...,K*—1,
where 75 = 1 and 7. = T, by convention;
o the function f* is continuously differentiable, i.e. f* is
differentiable and f*' is continuous.

Consequently, the acceleration f*” is piecewise constant. The
change points are the indices 7 where the jumps of f*"” occur,
meaning f*'(777) # (7).

b) Optimization problem: Define Sk as the set of all
quadratic splines with K — 1 knots, or equivalently, K seg-
ments where the function follows a quadratic form. A common
approach to change-point detection involves minimizing the
reconstruction error:

= frgg;{ Zf:(yt — f(t))Q}- 3)

QF

Solving this optimization problem is challenging, even for
short signal lengths [6], [7]. The main difficulty arises from
the continuity constraints at the knots, which hinder the
application of standard dynamic programming techniques.

In this work, we assume that the number of segments K
to be detected is fixed in advance and remains small relative
to the signal length. Even if the optimal K is unknown, one
can resort to heuristics such as the slope heuristic, the elbow
method, or cross-validation to select an appropriate value. An

alternative approach that minimizes a penalized reconstruction
error [11], [12] is left for future work.

We focus on the regularly sampled setting for simplicity.
We can straightforwardly extend our approach to the case of
irregularly sampled time series.

III. OUR APPROACH

Our approach consists of two key methodological steps:

o We establish a recursive formulation for the objective func-
tion (3) using dynamic programming, though it remains
intractable;

« To approximate this recursion, we (i) constrain the splines
to a finite set of possible values at the knots and (ii) restrict
initial speeds to a finite discrete set.

a) Dynamic programming: First, notice that the total
reconstruction error of a spline is the sum of K terms; each
term is equal to the reconstruction error on one segment
[try,tr..,). Dynamic programming iteratively computes the
cost of fitting 1,..., K segments to the data. An efficient
algorithm needs a recursive relationship from &k to k + 1
segments.

We formally introduce the cost of fitting a polynomial of
order two on a segment to derive this relationship. For two
indices a < b, an initial position p,, a final position p; and a
final speed vy, there exists a unique quadratic function f(z) =
ax? + Bx + such that f(a) = pa, f(b) = py and f'(b) = vy
Then, the reconstruction error between indices a (included)
and b (excluded) is Cy.p(pa, o, vp) defined by:

b—1

Ca:b(paypby Ub) = Z (yt - f(t))2 . (4)

t=a

A few algebraic manipulations using Faulhaber’s formula [13]
yield the following lemma.

Lemma 1. Assume that Y. ., Vs D.ci¥Y2 DouctSYs:
and ) s2y, are pre-computed for any t < T, which
can be done in O(T) operations. Then, for fixed pa-
rameters (a,b,pq,pp, V), the value of the segment cost
Co:b(Pas Db, Ub) (4) can be computed in O(1) operations.

An essential property of quadratic splines is that they are
entirely characterized by their initial speed, knots, and posi-
tions at the knots. More precisely, let f be a quadratic spline
with initial speed f’(1) = v, knot indices 7 and positions
pr = f(7%) at the knots. Since f is polynomial of order 2 on
[70, 71), the only possible value for f/(71) is v = 221:28 —g.
By induction, f'(7x) is equal to vy = 2% — Vp_1.
Therefore, we can find the unique quadratic polynomial on
each segment [y, 7+1) using the initial position py, the final
position py1 and initial speed vg. The spline f is then wholly
characterized.

Consequently, we rewrite the minimization (3) over Sk —the
space of quadratic splines with K segments— as a minimization
over the set of possible speeds and positions at the knots, with
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Fig. 2: Schematic view of different solutions (in light gray)
evaluated by SPOP. The best one is in blue. Candidate splines
all go through a red circle if there is a knot at this position.
For instance, the blue spline does not go through a red circle
on the third timestamp because the third timestamp is not a
knot; only the second timestamp is a knot (as well as the
first and last, by convention). Here, at each timestamp, SPOP
considers three (n = 3) possible values; the actual observation
is the middle point. Also, SPOP considers here three possible
initial speeds (gray arrows). Note that not all candidate splines
are shown for clarity.

the constraints that the speeds vy, satisfy the previous recursive
relationship. Formally,

K
lef = min {Z Cri_1ime (pk—hplka))}
(5)

k=1
over 2o, {Tk}i{:_ll’ {pk}szov {Uk}kK:O
st vk = 2(pk — pr—1)/(Tk — Th—1) — Vk—1.
We present a dynamic programming approach to find the
minimizing value of (5). Let Q¥(p,v) be the optimal recon-
struction error when approximating the ¢ first observations

{ys}L_, with a quadratic spline with k segments, and final
position p and final speed v. We get the following result.

Proposition 1. The following recurrence relation holds true

fork=1,... Kandt=k+1,...,T:
k k-1 P—p -
Qi (p,v) = min {Q ( 25— v)+Cs:t(p7p,v)}7
k<s<t
(6)
with Q(-,-) = 0 and QY(-,-) = +oo for all t > 1. Also,

QE =min, , QF (p,v) when Q¥ is defined in (3) or (5).

Proof. For any s < t, we extend Q*~! into QF by appending
the last segment while ensuring continuity at index s for both
position and derivative. The position continuity is achieved by
optimizing over p, while the derivative continuity is enforced
using the velocity uniquely determined by the relation 22=2 —
v, where p and v denote the position and speed at the end of the
last segment. Indeed, the final polynomial on [s, t) is q( ) =

(v(t—s)—(p—P)(5=2)* = (v(t—s) —2(p—p)) =

The function Q¥(-,-) becomes increasingly complex as ¢
grows. Currently, there is no efficient way to store it in
memory. As a result, solving the recurrence of Prop. 1 remains
intractable.

Algorithm 1 SPOP algorithm

# Compute one-segment solutions. Use set of initial speeds.

1: fort =2to T do > Loop over time
2 for j =1ton do > Loop over ending states
3 Che = {Cru (pri pug, 224705 — wo,) i, Vi |

1/ - . . 1
4 Q@)= 1<i<n i i<m G
5: B!(j,t) = (a1r<gln<111n 1g}1<n C“, )
6: V(4 t) = 222200 — gy . with [* argmin in [ line 4
7: end for
8: end for

# Compute k=2..K segments, propagating previous speeds.
9: for k =2 to K do > Loop over number of segments.
10: fort=k+1toT do > Loop over time.
11: for j =1tondo > Loop over ending states

12: ch, = {Q’“*l(z‘,s)
+Cs:t(ps,i> t,5,v(J, 1)), Vi, Vs}
with ’U(j, ) = 2% Vk 1(1 5)

. k k

13: Q (jjt) o 1<1<1'r{11£1<€<f Cj’t

14: B*(j,t)=(I,S)= argmin C},
1<i<n, k<s<t

15: VH(j,t) = 22 2L _ VR, 9)

16: end for

17: end for

18: end for

19: return (Q',..., Q% B!,...,B¥)

b) Approximate strategy: To circumvent the difficulty
of dynamic programming, we restrict the initial speed vy
and positions at knots p; to a finite set of candidate values:
Vo € VO = {’0071,1)0’2,...} and Pt € Pt — {pt,l,ptﬂg,...}.
We describe later heuristics to choose appropriate sets Vg
and P;. In other words, we only consider splines that can
take a finite set of values at the knots and initial speeds.
For more flexibility, the set of candidate values can change
with the temporal position, meaning that f(s) and f(¢) are
approximated by different sets P, and P, if ¢ # s. Fig. 2
shows a schematic view.

This discretization leads to the following approximation
of the dynamic programming method (6) where vlljﬁt is the
approximate ending speed for a fit into £ quadratics ending at
time ¢ and position p in P;. The recursive formulation is then
forke{l,...,K}andt € {k+1,...,T} given by:

Qf(p77j§7t) - mln {Qk 1(p’ ps )+C(‘>‘:t(ﬁap7vg,t)}
pEP

k _ op—p k— 1
Up,t_2tfs v~ )

with vgJ eW.

(N
For simplicity, we consider that all P; have the same number
n of elements, i.e. n = |P,| for all ¢. The resulting iterative
algorithm is called SPOP (SPline Optimal Partitioning); its
pseudo-code is in Algorithm 1.

In the algorithm, each C’;t is a set of costs over which
we minimize. For k = 1, the minimization is over (i,7), the
initial position and speed. For k& > 1, over (¢, s), the spatial and
temporal position of the last change. Results for Q¥ (p, v;f,t)
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Fig. 3: Noisy synthetic signals

are saved into K matrices QF € R"*T. We also need the
“argument” matrices B* in ({1,...,n} x {1,...,TH™*T:
BF(j,t) stores the indices of the optimal state p; j and time
respectively for Q¥ (j,t). We define the ending speed matrices
V* in R"*T, used for propagation. We build the solution path

((Pa(0)> T0) - - - » (Par)» Tic)) as follows:
(W(K), 7x) = (argmin Q¥ (5,T), T + 1),

Jj=1,...,n

(A(k), 71) = B (A(k + 1), 74 41), k=K —1,...,0.

Here, 7i(k) is the state index for knot k, i.e. f(%k) = Da(k)
where f is the spline approximation returned by SPOP.

Proposition 2. SPOP’s time complexity is O(Kn*T?).

Proof. There are 3K matrices to fill (Q, B, V), each of size
n x T. At time ¢, we compare at most ¢ X n values in (7)
in O(1) time (Lemma 1). For each matrix, we get a time
upper bounded by 331, > i-1(tn)O(1) < O(n*T?), which
proves the result. O

c) In practice: The set of possible values at the knots
is discretized by n uniformly spaced values, centered at the
observation, covering a user-defined range (here, 5% of the
signal’s amplitude). We also consider several (here, 5) initial
speeds, computed as the slopes of linear regressions over the
first samples.

IV. EXPERIMENTS

We compare SPOP to several baselines on synthetic and
real data.

For ¢ trend filtering (L1-TF), we use the implementation
of [14]. We use a dichotomic search to find the correct penalty
value for a given number of knots. For ¢, trend filtering
(LO-TF), we use the implementation of [10]. We also compare
to a “naive” approach (Naive): we compute the discrete 3™
derivatives of the time series and consider values above a
threshold as knots. Finally, for the synthetic data, our method
is run with an oracle discretization (SPOP Oracle): the
candidate state values are the true values at the knots, and
the initial speed is the actual initial speed. It will serve as a
bound on performance.

A. Synthetic data

a) Data: Four quadratic splines (Signals 1 to 4) are
generated with K* = 11, K* = 15, K* =5 and K* = 8
segments, respectively (see Fig. 3). For a number of samples

o

HH

1 5 10 15 20 25 1 5 10 15 20 25
K K

(a) Signal 1 (b) Signal 2

—— L1TF
LO-TF
SPOP Oracle
—— SPOP

1 5 10 15
K

20

(c) Signal 3

(d) Signal 4

Fig. 4: MSE vs the number of detected changes K. Vertical
bars indicate the variances over 100 realizations.

T, each signal is sampled and added a Gaussian noise (SNR
= 15 dB), this is repeated 100 times. Average MSE between
the approximation and the true noiseless signal are reported.

b) Influence of the compression rate on the MSE: Given
signals of size T" = 1000, we apply the algorithms for a vary-
ing number of segments K. Fig. 4 shows the performances.
We make several observations.

« For all signals, SPOP attains the minimum MSE at K = K*.
SPOP performs better than SPOP Oracle for K < K*,
and from K > K™, the opposite is true.

e L1-TF performs reasonably well for Signals 3 and 4, which
are simpler but considerably worse than SPOP on Signals 1
and 2, which are more complex.

e Naive and LO-TF do not perform well here.

Overall, SPOP and SPOP Oracle are the best performing
methods, especially for small K, i.e. in high compression
settings.

c¢) Influence of the sampling rate on the MSE: In this
experiment, the number of segments to detect is known (K =
K*), and we study the MSE for varying signal lengths. Results
are in Fig. 5. For all signals, SPOP better approximates when
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Fig. 5: MSE of SPOP for varying signal lengths
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Fig. 6: MSE vs execution time for varying sizes n of the
discrete state set. Above each point, n is shown.
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Fig. 7: Distribution of MSE on the ARMCODA data. SPOP
and L1-TF are statistically different (paired t-test, level 1%).

the number of samples increases (higher sampling frequency).

d) Number of discrete states: One of the main parameters
of SPOP is the number of discrete states n. A small n
makes the algorithm faster but restricts the number of splines
considered in the optimization. As a result, reconstruction error
increases when n decreases. Time and reconstruction error are
measured for n € {3,5,7,9,11} to evaluate this trade-off. For
all experiments, K = K*.

Results can be seen in Fig. 6. First, simpler signals (low
K™) are better approximated. Second, more states lead to more
significant execution times but lower MSE. Nevertheless, the
MSE improvement quickly stalls, meaning there is no clear
benefit of using more than five states.

B. Real-world data: motion capture time series

We use SPOP to compress 200 univariate time series of
length 1000 from the ARMCODA data set [1]. Each signal
is the coordinate of a sensor placed on a person’s body. Each
subject did a simple movement, e.g., hair combing, standing
up, etc. One signal example is shown in Fig. 1. We report the
MSE of SPOP and L1-TF using K = 26 segments on Fig. 7.
Visually, SPOP produces a better approximation. The MSE of
SPOP is also significantly better than L1-TF’s (paired t-test,
confidence level 1%).

V. CONCLUSION

The SPOP algorithm is an efficient method for univari-
ate time series compression using continuously differentiable
functions. It has a quadratic complexity. SPOP empirically
outperforms baselines in terms of MSE.

We see several future directions to extend our method. First,
SPOP algorithm can be adapted to multivariate time series and
higher order splines. Also, when the number of segments is
not fixed beforehand, we can solve a {y-penalized version of
the reconstruction error as in [11]. Finally, a theoretical result
on the reconstruction quality would be a valuable addition.
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