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Abstract—This paper presents a novel framework for low-
complexity, one-bit sigma-delta (XA) modulation for two-
dimensional (2D) and three-dimensional (3D) data, with ap-
plications in time-resolved imaging and data compression. We
propose a 2D first-order XA scheme that quantizes bandlimited
data into one-bit samples while shaping noise into unused high
frequency bands. Extending this, we introduce a diagonal 2D
model supporting both first-order (1) and second-order (Vi)
quantization, offering improved noise shaping and reconstruction
accuracy. This model is further extended to 3D A for volumetric
and time-resolved data quantization. Leveraging oversampling,
our method enables high-fidelity signal reconstruction. Exper-
iments on 2D images, 3D synthetic data, and real Time-of-
Flight (ToF) data validate our approach. We achieve successful
data reconstruction from one-bit samples and practical utility
in time-resolved imaging. Our results demonstrate significant
data compression potentials, reducing storage and enhancing
transfer speeds while preserving high reconstruction quality. This
work bridges low-complexity data acquisition with high-quality
reconstruction, paving the way for future research in megapixel-
resolution time-resolved imaging and efficient data compression.

Index Terms—One-bit sampling, Sigma-delta modulation, 2D,
3D, Time-resolved imaging, Data compression.

I. INTRODUCTION

Time-resolved imaging (TRI) has emerged as a powerful
tool in fields such as computational imaging, biomedical
imaging, and 3D scene reconstruction, enabling the capture
of scene-dependent time profiles at ultra-high temporal reso-
lutions. However, the scalability of TRI systems is fundamen-
tally limited by the need for high bit-rate analog-to-digital
converters (ADCs), which increases hardware complexity and
power consumption. To address this challenge, one-bit sam-
pling [1] has gained attention as a low-complexity alternative,
where measurements are quantized into binary values (41
or —1). While one-bit sampling simplifies hardware design,
it introduces significant information loss and poses unique
challenges for signal reconstruction.

A key insight from existing A modulation techniques is
that oversampling can mitigate the effects of coarse quan-
tization by shaping quantization noise into unused higher-
frequency bands, allowing for effective reconstruction of ban-
dlimited signals [2]. This principle has been widely leveraged
in the temporal domain for time-resolved signals but remains
underexplored for spatially structured data such as 2D images
and 3D volumetric data. In particular, traditional one-bit XA
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methods [3]-[5] predominantly focus on 1D signal reconstruc-
tion in time-resolved imaging, overlooking the potential of
extending noise shaping across spatial dimension.

Motivated by recent advances in Time-of-Flight (ToF) imag-
ing, we highlight a crucial observation: as the ToF pixel
pitch scales below twice the Airy disk radius given by
T Airy = 1.22%, where A is the wavelength of light and
NA is the numerical aperture of the optical system, the
bandlimited assumption holds not only in the temporal domain
but also along spatial dimensions [6]. For example, modern
ToF image sensors with 3 um global shutter pixels [7] satisfy
this condition for NA below approximately 0.2, assuming a
typical ToF wavelength of 940nm, reinforcing the validity
of bandlimited models in the spatial domain. This insight
enables the application of YA modulation to 2D and 3D data,
allowing for efficient one-bit quantization while exploiting
spatial oversampling to improve reconstruction accuracy.

Building on this motivation, we propose a novel framework
for low-complexity, one-bit YA modulation tailored for 2D
and 3D data, with specific applications in time-resolved imag-
ing and data compression. Fig. 1 is a schematic presentation
of the proposed approach. Our contributions are as follows:

1) We introduce a 2D 1%-order XA modulation scheme, which
quantizes 2D data into one-bit samples.

2) We develop a diagonal 2D model that supports both 1%-
order and 2"-order quantization, offering improved noise
shaping and reconstruction accuracy.

3) We extend this diagonal model to 3D XA modulation,
enabling efficient quantization and reconstruction of vol-
umetric and time-resolved data.

4) We validate our approach through extensive experiments
on 2D images, 3D synthetic data, and real Time-of-Flight
(ToF) data [8], demonstrating its practical utility in time-
resolved imaging and data compression.

Our results demonstrate that the proposed method achieves
high-fidelity reconstruction from one-bit samples, and offers
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significant potential for data compression by reducing stor-
age requirements and increasing data transfer efficiency. By
bridging the gap between low-complexity data acquisition and
high-quality reconstruction, this work paves the way for future
research in megapixel-resolution time-resolved imaging and
efficient data compression.

II. METHODOLOGY

This section presents the mathematical formulation of the
proposed 2D and 3D one-bit XA modulation schemes, build-
ing on the foundational principles of 1D one-bit sampling [9]
as described in prior work [10]. In 1D XA modulation, a
continuous-time signal f(¢) is quantized into one-bit samples
q[n] € {—1,+1} using a recursive feedback loop:

q[n] = sgn(u[n — 1] + f[n]) (1)
u[n] = uln — 1] + f[n] — q[n] 2)

where wu[n] is the state variable, and the quantization error
is shaped into higher frequencies through a finite difference
operator. This approach has been widely used in reconstruction
of bandlimited ToF data [3] and low-complexity data acquisi-
tion. However, extending this framework to multidimensional
data (e.g., 2D images and 3D volumetric data) introduces new
challenges, particularly in managing quantization noise and
ensuring accurate reconstruction.

While 2D generalizations of A modulation have been
explored in previous works [11]-[13], they primarily focus
on specific architectures or limited noise-shaping strategies. In
this work, we extend the 1D XA modulation framework to 2D
and 3D domains by introducing novel quantization schemes
that leverage recursive state updates and noise shaping to
achieve high-fidelity reconstruction. Below, we detail the
mathematical formulation of our proposed methods, beginning
with 2D 1%-order 3A modulation, followed by a diagonal 2D
model that supports both 1%-order and 2"¢-order quantization,
and finally extending these concepts to 3D XA modulation.

A. 2D I’'-order XA\ Modulation

Let f[i, 7] represent the input 2D discrete signal (e.g., an
image) at pixel coordinates (, 7). The quantization process is
defined as:

Q[imj] = sgn(cou[i - 17j] + clu[ivj - 1] + f[zu]}) (3)

where q[i, j] € {—1,+1} is the one-bit quantized output, and
uli, j] is the state variable updated recursively as:

Here, ¢y and c; are weighting coefficients that control the
contribution of the neighboring state variables u[i — 1, j] and
u[t, j — 1]. This recursive update ensures that the quantization
error f[i,j] — q[i, j] is fed back into the system, effectively
pushing the noise into higher frequencies.

B. Diagonal 2D XA Modulation

To reduce the complexity of the model, enhance noise
shaping, and improve reconstruction accuracy, we propose a
diagonal 2D YA modulation model that supports both 1%-
order and 2™-order quantization. Let f[i, j] represent the input
2D signal at pixel coordinates (i, 7).

For the 1%-order case, the quantization process is defined
as:

qli, j] = sgn(ufi — 1,5 — 1] + f[i, j]) S

where ¢[i, j] € {—1,+1} is the one-bit quantized output, and
ult, j] is the state variable updated recursively as:

uli, j] = uli = 1,5 = 1] + [, j] — qli, j] (6)

For the 2"-order case, we introduce an additional state
variable z[i, j] to further suppress quantization noise. The 2"-
order quantization is defined as:

q?'[i, j] = sgn(couli—1,j — 1 +z[i— 1,5 — 1]+ f[i, 5]) (7)

where c( is a constant parameter (typically ¢y = 0.5). The
state variables ul[i, j] and x[¢, j] are updated as:

uli, j] = ufi — 1,5 — 1] + x4, j] (®)
‘T[ivj]:I[Z‘_lvj_l}_Ff[ivj]_qm[iaj]- 9

This 2"-order scheme provides better noise shaping, partic-
ularly in scenarios with high dynamic range or noisy input
signals [9].

C. Extension to 3D XA Modulation

We extend the diagonal 2D model to 3D ¥ A modulation to
handle volumetric or time-resolved data. Let f[é, j, k] represent
the input 3D discrete signal at coordinates (4, j, k). The 1%-
order 3D quantization is defined as:

Q[z7]7k] :Sgn(u[l_la.j_17k_1]+f[l>]7 k]) (10)
with the state variable w[é, j, k] updated as:
U[’L7],k] = 'LL[’L - 17] - 17k - ]-] + f[Z7]v k} - Q[Zvjv k] (ll)

For the 2™-order 3D quantization, we introduce an additional
state variable x[i, j, k], and the XA quantization is defined as:

q[Q] [izja k] = sgn(cou[i - 17.] - 17k - 1]

. . . (12)
+zli—1,5— 1, k—1)+ f[i,j,k])
with the state variables updated as:

.1'[2-,]', k] = JI[’L - 17.7 - 1ak - 1] —‘rf[l,],k] _q[Q][laJak]

This 3D extension enables efficient quantization of volumetric
data while maintaining the noise-shaping properties.
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D. Reconstruction from One-Bit Samples

The original bandlimited 2D/3D discrete signal is recon-
structed from its one-bit quantized samples by leveraging low-
pass filtering in the Fourier domain to suppress quantization
noise while preserving the essential signal components. Let
the Fourier transform of the one-bit samples be denoted by:

Qlw] = Fq[x]},

where ¢[x] is the one-bit quantized signal, x = (i, j) for 2D
spatial data or x = (4, j, k) for 3D spatiotemporal data, w =
(w1, ws) or w = (wy,ws,ws), respectively.

Since the original signal is bandlimited, only frequencies
within a known 2D/3D region (2,4 contain valid information,
a low-pass filter is applied in the Fourier domain to retain these
components:

(14)

Qlw] = HlwQ[w], (15)
where the filter H|w] is defined as:
1 Qban
Hlw] = q 7 = (16)
0, otherwise

After filtering, the signal is reconstructed by applying the
inverse Fourier transform:

fix] = FHQlw]}

This recovers a bandlimited approximation f[x] of the
original signal f[x], with minimal reconstruction error:

A7)

argminNE:IV[n] —f[n]‘2 <e

fezﬂbzmd n=0

(18)

where f[n] and f[n] denote spatial sample points of the
reconstructed and original signals, respectively, Xq,,, the set
of Qpang-bandlimited signals and N the number of samples.

E. Oversampling and Noise Shaping

The performance of the proposed method depends on
the oversampling factor p and the order of quantization
[10]. Higher oversampling factors and higher-order quan-
tization schemes improve noise shaping and reconstruc-
tion accuracy. The reconstruction error [10] is bounded by

fli, 4] —f[i,j]’ < ;%L ||<p(L)||L1, where L is the order of
quantization, s is the oversampling factor, and ¢(F) is the
interpolation kernel.

This bound ensures that the reconstruction error decreases
exponentially with increasing p and L.

In the current implementation, oversampling in the spatial
domain is simulated via interpolation methods. However, as
the pixel pitch of ToF pixels decreases below the point spread
function (PSF) of the lens, optical oversampling will naturally
occur. Further oversampling can be achieved using optical
techniques such as spatial light modulators (SLMs) [14] or
diffractive optical elements (DOEs) [15], which can physically
enhance the spatial resolution of the imaging system [16].

(a) (b) © (@

Fig. 2. (a) The ground truth of “TIME OF FLIGHT” image [3] and Camera-
man image. (b)-(d) Recovered images from standard 1%-order, diagonal 1%-
order, and diagonal 2" -order one-bit samples, respectively. The MSE between
the reconstructed images and the ground truth is shown in the image.

III. EXPERIMENTAL EVALUATION

This section presents the experimental validation of the
proposed 2D and 3D one-bit ¥A modulation schemes. We
evaluate the performance of our methods on 2D images, 3D
synthetic data, and real ToF data [8], demonstrating their effec-
tiveness in signal reconstruction, noise shaping, and parametric
depth and amplitude estimation. The experiments are divided
into three parts: (1) 2D image reconstruction, (2) 3D synthetic
data reconstruction, and (3) real ToF data analysis. For each
experiment, we provide details on the dataset, experimental
setup, and results.

A. 2D Image Reconstruction

Dataset. We tested the standard 2D 1%-order and proposed di-
agonal 2D YA modulation schemes on two images: the “TIME
OF FLIGHT” amplitude image [3] and the Cameraman image
[17]. These images were chosen for their varying textures and
complexity, making them suitable for evaluating the robustness
of the quantization and reconstruction processes.
Experimental Setup. Quantization: The images were quan-
tized using the 1%-order and 2"-order diagonal 2D XA
modulation schemes. Oversampling: In the spatial domain,
oversampling was simulated by applying linear interpolation
with a factor of 50, followed by low-pass filtering to suppress
high-frequency artifacts and ensure bandlimiting. Reconstruc-
tion: The original images were reconstructed from the one-bit
samples using the frequency-domain reconstruction method
described in Section II-D. Fourier Spectrum Analysis: The
Fourier spectrum of the one-bit samples was analyzed to
demonstrate the compression of the signal into a limited
bandwidth and the shaping of noise into higher frequencies.
Results. Reconstruction Quality: As shown in Fig. 2, the
reconstruction results from the standard 2D 1%-order method,
the diagonal 2D 1*-order method, and the diagonal 2D 2"-
order method were visually indistinguishable from the original
images for both the “TIME OF FLIGHT” image and the
Cameraman image. This demonstrates the effectiveness of the
proposed methods in preserving image details.

Fourier Spectrum: As shown in Fig. 3(a)-3(f), the Fourier
spectrum of the one-bit samples demonstrates that the signal
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is confined within a limited bandwidth, while quantization
noise is pushed to higher frequencies. Additionally, the di-
agonal methods further suppress quantization error, reducing
it to nearly zero along the direction of quantizer operation.
This confirms the noise-shaping capabilities of the proposed
method.

Fourier Spectrum (d8)

0
Fourier Spectrum (d8)

(b)

a
s.
5
&
g
4
&
3
&

002 001 0
Fourier Spectrum (dB)

-0.02 001 0 01
Fourier Spectrum (dB)

(d) (e ()
Fig. 3. Fourier spectrum (dB) of one-bit sampling results. (a) Standard 2D
15C-order result, (b) Diagonal 2D 1%-order result, (c) Diagonal 2D 2"-order
result. (d)-(f) Zoomed-in low-frequency regions of (a)-(c), respectively.
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Quantization Error: The mean squared error (MSE) between
the original and reconstructed images was calculated using

by - 2
MSE(f, /) = % 05 | fln] - £l

As shown in Table I, the 2™-order scheme achieves a
lower MSE compared to the 1%-order scheme. Moreover, our

proposed ‘“diagonal simplification” model not only preserves
reconstruction accuracy but also improves it.

TABLE I
QUANTIZATION ERROR OF 2D XA MODULATIONS
Standard Diagonal Diagonal
Dataset 1%-order 15‘-§rder 2"_order
TOF* 4.03 x 10~° 343 x107° 3.42x107°
Cameraman | 5.68 x 10™% | 4.11 x 107° | 3.64 x 10~6
*“TIME OF FLIGHT” image.

B. 3D Synthetic Data Reconstruction

Dataset. We generated a synthetic 3D dataset consisting of a
Gaussian sphere to evaluate the performance of the proposed
3D YA modulation scheme in handling volumetric data. The
dataset was created by defining a 3D grid with coordinates
ranging from —1 to 1 along the z, y, and z axes, with a
resolution of 800 points per axis. A Gaussian function with
a standard deviation of o = 0.2 was evaluated on the grid
to create a 3D sphere centered at the origin. The intensity of
the sphere decays exponentially with distance from the center,
simulating a soft spherical object with a smooth intensity
profile.

Experimental Setup. The experimental setup for 3D data
follows the same methodology as the 2D case, utilizing the
1*t-order and 2"-order diagonal 3D XA modulation schemes.
In this setup, the sampling rate exceeds the Nyquist rate by a
factor of 38.

Results. Reconstruction Quality: As shown in Fig. 4(a)-4(c),
the 3D Gaussian sphere was perfectly reconstructed from the
one-bit samples, with no visible artifacts or distortions.

04,

Fig. 4. (a) Original 3D Gaussian sphere. (b) Recovered 3D Gaussian sphere
from diagonal 3D 1%-order one-bit samples. (c) Recovered 3D Gaussian
sphere from diagonal 3D 2"d-order one-bit samples.

Fourier Spectrum: For the 1%-order scheme, the full spec-
trum Fig. 5(a) and its slices in the spatial and time domains
Fig. 5(b)-5(d) show that the signal is confined to a limited
bandwidth while quantization noise is pushed to higher fre-
quencies, whereas for the 2"-order scheme, Fig. 5(e) and
Fig. 5(f)-5(h) demonstrate stronger noise shaping, further
refining the bandwidth with minimal residual noise, as evi-
dent from the central black circular area representing signal
components and the white region indicating a clean band.

Quantization Error: The mean squared error (MSE) between
the original and reconstructed 3D sphere was calculated. The
I-order scheme achieved an MSE of 3.22 x 102, while
the 2"-order scheme achieved a significantly lower MSE of
6.37 x 10~7. This demonstrates the superior noise-shaping
capabilities of the 2"-order scheme.

TABLE I
DATA SI1ZE COMPARISON (BYTES)

Dataset Original Compressed | Ratio (=)
TOF* 2.8 x 108 1.6 x 10° 1750: 1
Cameraman 2.3 x 108 6.5 x 10° 354: 1

Gaussian Sphere | 4.1 x 10° 1.5 x 10° 27333: 1

*“TIME OF FLIGHT” image.
C. Real Time-of-Flight Data Analysis

Dataset. We used real ToF raw data obtained by observing
a diffusive, semitranslucent sheet that covers a placard reads
“TIME OF FLIGHT” [8]. The dataset consists of raw coded
ToF data acquired at different time shifts.

Experimental Setup. Quantization: The ToF data was quan-
tized using the diagonal 3D XA modulation schemes. Over-
sampling: Oversampling in the spatial domain was simulated
by applying linear interpolation with a factor of 6. Reconstruc-
tion: The original ToF data was reconstructed from the one-bit
samples using the frequency-domain reconstruction method in
(15)-(17). Depth and Amplitude Estimation: The matrix pencil
method [18] was applied to time-domain Fourier samples of
the reconstructed signal to parametrically estimate depth and
amplitude information, following the approach in [3].
Results. Depth and Amplitude Accuracy: As shown in Fig. 6,
the estimated depth and amplitude values were compared
to the ground truth. The results were encouraging but also
revealed slight distortion, indicating room for improvement.

D. Discussion

The proposed 2D and 3D one-bit A modulation schemes
achieve high-fidelity reconstruction, with 2"-order schemes
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Fig. 5. Fourier spectrum (dB) analysis of the 3D Gaussian sphere. Zoomed-in
low-frequency regions of (a) Full spectrum from 3D 1%-order one-bit samples.
(b)-(d) Slices of the spectrum from 3D 1%t-order samples in spatial and time
domains. (i) Full spectrum from 3D 2"-order one-bit samples. (j)-(1) Slices
of the spectrum from 3D 2"-order samples in spatial and time domains.

005 01 015 02 0% 03 65 7 7.5 8 8.5
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Fig. 6. Estimated amplitude (a.u.) and depth (m) from 3D one-bit samples.
(a)-(b) Amplitude from 3D 1%t-order samples for two scenes. (c)-(d) Depth
from 3D 1%-order samples for two scenes. (¢)-(f) Amplitude from 2"-order
samples. (g)-(h) Depth from 2"d-order samples.

demonstrating superior noise shaping and accuracy, particu-
larly in challenging conditions. As shown in Table II, the
compressed bandlimited Fourier spectrum of one-bit samples,
which enables accurate reconstruction, is significantly smaller
than the original data, highlighting the method’s potential for
efficient data compression across various datasets.

IV. CONCLUSION

In this paper, we proposed a novel framework for low-
complexity, one-bit XA modulation applied to 2D and 3D
data, with applications in time-resolved imaging and data
compression. Our work makes the following key contributions.
2D 1%-order XA modulation: we presented a 2D 1%-order XA
modulation scheme and developed simplified versions of the
quantizers offering improved noise shaping and reconstruction
accuracy. 3D extension: we extended the diagonal 2D model
to 3D XA modulation, enabling efficient quantization and
reconstruction of volumetric and time-resolved data. Our work
bridges the gap between low-complexity data acquisition and
high-quality reconstruction, offering a promising direction for
future research in megapixel-resolution time-resolved imaging

and efficient data compression. The proposed methods are
particularly well-suited for applications in computational 3D
imaging, LiDAR systems [19], and real-time data processing.
Future research directions include: a) Comprehensive noise
robustness evaluation, improving the robustness of the pro-
posed methods to real-world noise and model mismatch, par-
ticularly in time-resolved imaging applications. b) Hardware
implementation, including the development of efficient on-chip
implementations of the proposed quantization.
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