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Abstract—Multiple importance sampling is an efficient Monte
Carlo method to approximate integrals. It is able to simulate
samples from several proposal distributions and then weight these
samples accordingly. Different weighting strategies have been
proposed in the literature, some of which largely reducing the
variance of the Monte Carlo estimators. However, obtaining good
weighting mechanisms is often challenging due to intractable
integrals and non-convex optimization problems. In this work,
we propose two new weighting mechanisms that are both efficient
to design and obtain provable high performance. We build upon
our recent work, where quasi optimal weights are obtained by
solving a linear equation. Our new methods lead to more efficient
computations and more robust estimations through a fast convex
minimization of the variance of the estimator. The contribution
of this paper is also to provide a better understanding of previous
works. We validate the new methods in three experiments,
showing their excellent performance.

Index Terms—Multiple importance sampling, Monte Carlo

I. INTRODUCTION

Multiple importance sampling (MIS) [1], [2] is an efficient
method in Monte Carlo integration that has been widely
used in statistical signal processing [3], [4]. MIS consists on
combining samples from several sampling proposals in order
to produce more efficient estimators. In the well-known deter-
ministic mixture estimator (also known as balance heuristic),
the weights used are proportional to the count of samples
from each proposal [2], [5], [6]. Several estimators have been
proposed that provide better performance than the balance
heuristics with equal sample budget [7]–[10]. In [6], [11],
different equal sample number strategies were analysed. The
cost associated with the sampling strategies was considered
in [12], and an adaptive solution by optimizing the variance
using the Newton-Raphson method was presented in [13].

The optimal weights can be obtained with convex optimiza-
tion, which require knowledge of the integrand function and
its gradient. However, in some cases as in global illumination,
this integrand is not analytically available, so previous samples
should be used for the approximation, which introduces errors
in the computation.

Using the fact that the MIS optimization can be represented
as minimizing a Tsallis f-divergence [14], [15], from which
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the variance or χ2 divergence [16]–[19] and Kullback-Leibler
divergence [20] are particular cases, in previous work [21]
we presented a linear heuristic to obtain the optimal weights,
based on approximating arithmetic by geometric mean of
primary estimators.

In this paper, we present two new methods that optimize
MIS estimators through efficient and effective linear solu-
tions. One method is based on minimizing the χ2-divergence
between the target and the proposals, and the other method
minimizes the L2 distance between the proposal and the
normalized function to integrate. A new theoretical result
is also found for the method in [21], showing that it can
be interpreted as a Bayesian update of individual proposals
with the mixed proposal. We compare the three methods in
numerical examples where we have access to the ground truth,
and we show the good performance of our novel approaches.

The rest of the paper is organized as follows. In Section
II, we provide background material. We present our method-
ological contribution in Section III. We close the paper with
numerical results in Section IV and concluding remarks in
Section V.

II. BACKGROUND

In this section, we present the problem statement and review
some basics of multiple importance sampling (MIS).

A. Problem statement

The goal is to approximate the intractable integral

µ =

∫
f(x)dx,

where x ∈ Rdx and f(x) is an integrable function. In the
Bayesian signal processing literature, a common problem is
f(x) = h(x)π(x|y), where h(x) is a test function and π(x|y)
is the posterior distribution of the parameter x given the data
y ∈ Rdy [22]. Here, we work with f(x) so we tackle a more
generic problem.

B. Multiple importance sampling

In importance sampling (IS), the integral µ is approximated
by N samples {Xn}Nn=1 that are independently simulated from
a so-called proposal probability density function (PDF), p1(x).
Each sample receives an importance weight wn = f(Xn)

p1(Xn)
,
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and one can approximate the integral as µ̂ = 1
N

∑N
n=1 wnXn

[23]. In MIS, the samples are instead simulated from a set of
m proposal PDFs, {pi(x)}mi=1. In the following, we review
several sampling and weigthing mechanisms, with associated
estimators, that are often used to approximate µ. We refer the
interested reader to [6].
Deterministic mixture sampling or balance heuristic. In this
methods, a number ni of samples are drawn from proposal
pi(x), so the total number of samples is

∑m
i=1 ni = N . When

the sample numbers ni are determined deterministically, the
approach is called multi-sample and its estimator is given by

F =
1

N

m∑
i=1

ni∑
j=1

f(Xi,j)

ψα(Xi,j)
, (1)

where αi = ni/N is the fraction of the samples allocated to
the i-th proposal, and

ψα(x) =

m∑
k=1

αkpk(x) (2)

is the mixture PDF, where α = (α1, ..., αm) is the vector with
the mixture weights. The variance of this estimator is

V [F ] =
1

N

(∫
f2(x)

ψα(x)
dx−

m∑
i=1

αiµ
2
i

)
, (3)

where µi =
∫ f(x)
ψα(x)pi(x)dx and it can be shown that∑m

i=1 αiµi = µ [6].
The task is to optimize the vector α that minimizes V [F ]

with the budget constraint
∑m
k=1 αk = 1. However, there are

two additional challenges. First, the variance integrals cannot
be computed analytically and must be estimated from samples,
introducing uncertainty that affects the final results. Second,
the optimization process should be efficient and not introduce
excessive overhead. Since direct variance optimization fails
to meet these two requirements, standard approaches in the
approach rely on the so-called heuristic rules that provide
simple and robust estimations, although do not necessarily
guarantee to find the minimum variance.
Standard mixture sampling. In standard mixture sampling,
the N samples {Xj}Nj=1 are i.i.d. according to the mixture of
(2), and the estimator is

F =
1

N

N∑
j=1

f(Xj)

ψα(Xj)
(4)

with variance

V [F ] =
1

N

(∫
f2(x)

ψα(x)
dx− µ2

)
. (5)

Observe that V [F ] ≤ V [F ], since this approach introduces
additional randomization w.r.t. deterministic mixture sampling
[1], [19], [24]. However, standard mixture sampling can also
be used when the numbers of samples is less than the number
of proposals.

C. MIS as divergence between distributions
In MIS, a common approach is to optimize ψα(x) in such

a way that mimics the integrand f(x). If f(x) ≥ 0 in the
whole integration space, then the integrand scaled down by
the integral g(x) = f(x)/µ is also a PDF. The MIS problem
can be stated as finding mixture PDF ψα(x) that minimizes a
particular divergence between two distributions. For instance,
it is easy to see that the variance of the estimator is minimized
when the proposal minimizes the χ2 divergence from f(x)/µ
to the mixture proposal ψα(x) [17], [14].

D. Optimal MIS solution with Kullback-Leibler divergence
An optimal solution for Kullback-Leibler divergence was

given in [14], the optimum is such that for all i, the first
moments with respect to pi(x)

M1
i =

∫ (
f(x)

ψα(x)

)
pi(x)dx = Epi

[
F
]
, (6)

have to be equal. Eq. (6) guarantees a global minimum. It
retrieves the solution in [25]. As

m∑
i=1

αiM
1
i =

∫ (
f(x)

ψα(x)

) m∑
i=1

αipi(x)dx (7)

=

∫ (
f(x)

ψα(x)

)
ψα(x)dx =M1,

where M1 is the first moment respect to ψα(x), the condition
for minimum in Eq. (6) is equivalent to for all i,

M1
i =M1. (8)

III. OPTIMIZING MIS ESTIMATORS VIA LINEAR
EQUATIONS

We now propose our three methods to optimize the MIS
estimator through fast and efficient novel mechanisms. In
particular, we propose three approaches. The first method, ap-
proximates the non-linear equations for optimal α in Kullback-
Leibler divergence through linear equations. The second
method minimizes a χ2 divergence between the proposal PDF
and the normalized function to integrate, approximating the
problem such that the equations for optimal α are linear. The
third method follows a similar approach as the second one,
using instead the L2-norm of the difference of both PDFs.
A. First linear method

Given N1 samples {X1
1 , . . . , X

1
N1

} from p1(x) and N2

samples {X2
1 , . . . , X

2
N2

} from p2(x), the Kullback-Leibler
optimal happens when the first moments of F are equal [14],
thus we equal the estimators for each moment,

Êp1 [F ] ≈ 1

N1

N1∑
i=1

f(X1
i )

ψα(X1
i )

=
1

N2

N2∑
i=1

f(X2
i )

ψα(X2
i )

≈ Êp2 [F ].

(9)
However, solving Eq. (9) would mean to solve a polynomial
of grade max(N1, N2) equation for α. Let us consider instead
solving the equation,∑N1

i=1 f(X
1
i )∑N1

i=1 ψα(X
1
i )

=

∑N2

i=1 f(X
2
i )∑N2

i=1 ψα(X
2
i )
. (10)
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Observe that Eq. (10) is a linear equation in α:∑N1

i=1 f(X
1
i )

α
∑N1

i=1 p1(X
1
i ) + (1− α)

∑N1

i=1 p2(X
1
i )

(11)

=

∑N2

i=1 f(X
2
i )

α
∑N2

i=1 p1(X
2
i ) + (1− α)

∑N2

i=1 p2(X
2
i )
.

It is easily checked that Eq. (10) estimates the solution of

Eψαp1 [F ] =

∫
f(x)

ψα(x)

ψα(x)p1(x)∫
ψα(x)p1(x)dx

dx (12)

=

∫
f(x)p1(x)dx∫
ψα(x)p1(x)dx

≈
∑N1

i=1 f(X
1
i )∑N1

i=1 ψα(X
1
i )

=

∑N2

i=1 f(X
2
i )∑N2

i=1 ψα(X
2
i )

≈
∫
f(x)p2(x)dx∫
ψα(x)p2(x)

dx

=

∫
f(x)

ψα(x)

ψα(x)p2(x)∫
ψα(x)p2(x)dx

dx

= Eψαp2 [F ].

Thus we have substituted the optimality condition of Ep1 [F ] =
Ep2 [F ] by the condition Eψαp1 [F ] = Eψαp2 [F ] obtaining
a linear equation in α. Observe that ψαp1, ψαp2 can be
interpreted as the Bayesian update of p1, p2 with ψα.

Eq. (10) was introduced in [21] by considering the arith-
metic mean of primary estimators of the first moments to be
approximately equal to the geometric mean of these estimators.
For m pdfs, Eq. (10) generalizes to m − 1 independent
equations ∑Ni

l=1 f(X
i
l )∑Ni

k=1 ψα(X
1
k)

=

∑Nj

l=1 f(X
2
l )∑Nj

k=1 ψα(X
j
k)

(13)

for all i, j, that taken together with
∑m
k=1 αk = 1 gives us

m independent equations for the m unknowns {αk}mk=1. The
case of weight equal to zero Eq. (13) will fail to deliver a
convex solution for weights for the case where the optimal
weight corresponding to a given proposal is equal to zero.
This reflects the fact that Eq. (8) will fail for this case. To
account for this, in [21] it was proposed considering each αi
equal to zero in turn and solve the remaining m − 2 linear
system. From all the feasible solutions, we choose the one
that has less sample variance, although this can potentially
have a combinatorial cost.
B. Second linear method: χ2 divergence minimization

If we optimize χ2(g, ψα), equal to the variance normalized
by µ2 of the estimator F , no linear approach would result. Let
us instead use the other direction of the divergence

χ2(ψα, g) =

∫
(ψα(x)− g(x))2

g(x)
dx. (14)

It is convex in α. Using Lagrange multipliers, we obtain that
the optimality condition of Eq. (14) is when ∀i, j∫

ψα(x)

g(x)
pi(x)dx =

∫
ψα(x)

g(x)
pj(x)dx. (15)

We consider two proposals p1(x), p2(x) with N1, N2 samples,
respectively. Then, the optimality condition leads into the
linear equation

1

N1

N1∑
i=1

ψα(X
1
i )

g(X1
i )

=
1

N2

N2∑
i=1

ψα(X
2
i )

g(X2
i )

,

or

1

N1

N1∑
i=1

ψα(X
1
i )

f(X1
i )

=
1

N2

N2∑
i=1

ψα(X
2
i )

f(X2
i )

. (16)

Observe that Eq. (16) corresponds to the equality of the
harmonic means of the primary estimators of the first moments
in Eq. (6). Thus, as the first linear method was derived from
the equality of the arithmetic means of the first moment
estimators, this second linear method derives from the equality
of the harmonic means. Finally, observe that Eq. (16) solves
for the optimum of∫ (

ψα(x)

g(x)
− 1

)2

dx. (17)

C. Third linear method: L2-norm minimization

Let us consider the minimum of the squared L2-norm∫ (
g(x)− ψα(x)

)2
dx, (18)

which is convex in α. Using Lagrange multipliers, we obtain
that the optimality condition is when ∀i, j∫

(g(x)−ψα(x))pi(x)dx =

∫
(g(x)−ψα(x))pj(x)dx. (19)

Suppose two proposals p1(x), p2(x) with N1, N2 samples,
respectively, the optimality condition translates into the linear
equation

1

N1

( N1∑
i=1

g(X1
i )−

N1∑
i=1

ψα(X
1
i )
)
=

1

N2

( N2∑
i=1

g(X2
i )−

N2∑
i=1

ψα(X
2
i )
)
,

which can be re-written as

N2
∑N1

i=1 f(X
1
i )−N1

∑N2
i=1 f(X

2
i )

µ
= N2

N1∑
i=1

ψα(X
1
i )−N1

N2∑
i=1

ψα(X
2
i ),

where µ is estimated with the deterministic mixture estimator
F with α0 = { N1

N1+N2
, N2

N1+N2
} as

µ ≈ 1

N

( N1∑
i=1

f(X1
i )

ψα0
(X1

i )
+

N2∑
i=1

f(X2
i )

ψα0
(X2

i )

)
. (20)

IV. NUMERICAL EXAMPLES

We present here three examples. In all examples, we were
able to compute the ground truth of the values of variances
V [F ] by using a solver for Eq. (3).
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Fig. 1. f(x)/µ (in blue) superimposed on the two PDFs used for MIS integration in Example 1 (left), Example 2 (middle), and Example 3 (right).

Example 1

Suppose we want to evaluate the integral (see Fig. 1(left)))

µ =

∫ 3.5π

0.01

(√
x+ sinx

)
dx ≈ 25.3065 (21)

by MIS using PDFs N (2, 1) and N (8, 2), where N (m,σ)
stands for the normal distribution of mean m and standard
deviation σ. For this example, equal sample number MIS has
variance V [F ] = 24.1152. In Fig. 2 we show the values of
V [F ] for the optimal α fractions for the K-L divergence using
100 runs each consisting of 4 Newton-Raphson iterations with
50 total samples in each iteration, thus 200 samples in total
for each run. In Fig. 3 we show the values of V [F ] for the
three linear methods for 100 runs, each with 100 samples from
each proposal, thus 200 samples in total.

20 40 60 80 100

14

16

18

20

22

24

Fig. 2. The variances, in vertical axis, obtained for 100 runs with Newton-
Raphson for K-L divergence method with 4 iterations of 50 samples each
applied to Example 1. The horizontal lines correspond to the optimal and the
equal sampling variance V [F ], respectively.
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Fig. 3. The variances, in vertical axis, obtained for 100 runs with the three
methods (first in blue, second in green and third in red) applied to Example 1,
with a total of 100 samples for each proposal. The horizontal lines correspond
to the optimal and the equal sampling variance V [F ], respectively.

Example 2
Let us consider integral (see Fig. 1(center))

µ =

∫ 4

−4

(N (−1.5, 1) + 2N (1.5, 0.75)) dx ≈ 2.9929 (22)

by MIS using functions N (−1.5, 1) and N (1.5, 0.75). For
this example, equal sample number MIS has a variance of
V [F ] = 0.1134. In Fig. 4 we show the values of V [F ] for the
optimal α fractions for the K-L divergence using 100 runs of
4 Newton-Raphson iterations with same number of samples as
in Example 1. In Fig. 5 we show the values of V [F ] for the
three linear methods for 100 runs, each run with 100 samples
from each proposal, thus 200 samples in total.
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Fig. 4. The variances, in vertical axis, obtained for 100 runs for K-L
divergence with Newton-Raphson method with 4 iterations of 50 samples
each applied to Example 2. The horizontal lines correspond to the optimal
and the equal sampling variance V [F ], respectively.
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Fig. 5. The variances, in vertical axis, obtained for 100 runs with the three
methods (first in blue, second in green and third in red) applied to Example 2,
with a total of 100 samples for each proposal. The horizontal lines correspond
to the optimal and the equal sampling variance V [F ], respectively.

Example 3
Consider the approximation of the following integral (see

Fig. 1(right))

µ =

∫ π/2

0.01

(√
x+ sinx

)
dx ≈ 2.3118 (23)
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by MIS using functions 2− x, and sin2(x). For this example,
equal sample number MIS has a variance of V [F ] = 0.2772.
In Fig. 6 we show the values of V [F ] for the optimal
α fractions for the K-L divergence using 100 runs of 4
Newton-Raphson iterations with same number of samples as
in Example 1. In Fig. 7 we show the values of V [F ] for the
three linear methods for 100 runs, each run with 100 samples
from each proposal, thus 200 samples in total.
Finally, in Table I we compare, for the examples described
above, the minimum V [F ] value, Eq. (7), the value obtained
with the solution of equal first moments, Eq. (8), and the value
with the solution of linearizing equal first moments, Eq. (12).

0.10

0.15

0.20

0.25

Fig. 6. The variances, in vertical axis, obtained for 100 runs with Newton-
Raphson method for K-L divergence with 4 iterations of 50 samples each
applied to Example 3. The horizontal lines correspond to the optimal and the
equal sampling variance V [F ], respectively.
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Fig. 7. The variances, in vertical axis, obtained for 100 runs with the three
methods (first in blue, second in green and third in red) applied to Example 3,
with a total of 100 samples for each proposal. The horizontal lines correspond
to the optimal and the equal sampling variance V [F ], respectively.

TABLE I
VALUES OF V [F ]: OPTIMUM , EQUAL FIRST MOMENTS, AND FIRST

LINEAR METHOD SOLUTION FOR EXAMPLES 1–3.

Example Optimum Equal first moments Linear method
1 13.4788 13.5021 13.5398
2 0 0 0
3 0.09032 0.09268 0.09042

V. CONCLUSION

In this paper we have revisited a linear method, based
on K-L divergence optimization, to approximate the optimal
weights in Multiple importance sampling by solving linear
equations, added further motivation to the method and showed
the relationship to the exact optimal values. We have also
introduced two new linear method to solve for the quasi-
optimal weights. Our preliminary results show that the new
methods work also better than the Newton-Raphson based

solution, and the one based on optimizing the L2 squared norm
appears to be as good as our original method. This method was
showed in [21] to be the state of the art in global illumination,
thus in future work we will evaluate the new methods in the
global illumination problem too. We will also consider the cost
associated with the sampling strategies.
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