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Abstract— A method for shaping the power spectral den-
sity (PSD) of the total error due to uniform quantisation is
proposed. It utilises non-subtractive dithering, generated using
a joint specification of the probability density function (PDF)
and the PSD by way of stochastic minimisation (SM). The
output of the quantiser can be made linear and continuous
in the mean and the variance of the error can be made
independent of the quantiser input by using a dither with a
triangular PDF. However, shaping the error PSD to a desired
form for reconstruction at the quantiser output remains input
dependent. An adaptive dithering approach is implemented to
address this dependency. By exploiting symmetry properties of
uniform quantisation, it is possible to use SM to generate a
limited number of dither sequences and reuse them to shape
the total error PSD for arbitrary inputs. The approach is
implemented using a look-up table (LUT). When optimised
for reconstruction filtering, simulation results demonstrate an
improved PSD shaping performance over the state-of-the-art
feed-forward method of over two orders of magnitude within
a given bandwidth.

I. INTRODUCTION
Quantisation and re-quantisation are fundamental opera-

tions in digital signal processing, digital-analogue conver-
sion, power electronics and measurement systems. Error is
introduced since only a discrete subset of values can be
represented [1,2].

Several methods exist to shape the power spectral den-
sity (PSD) of error due to quantisation. Combined with
oversampling, PSD shaping reduces effective quantisation
error by concentrating error power into specific frequency
ranges for subsequent filtering. ∆Σ-modulation achieves this
by using quantiser feedback to shape the output PSD [3],
but the discontinuous nature induces chaotic behaviour with
input-dependent and empirically derived stability [4]. Model
predictive control (MPC) offers higher performance and
rigorous stability guarantees [5,6], though at the cost of
significant computational effort.

Dithering is a feed-forward method that enables similar
PSD shaping effects. As it is not reliant on feedback, it
can be precomputed and provide guaranteed stability and
determinism. An external signal is added to the input of
the quantiser, and the resulting quantiser error can have a
spectral distribution [7]–[9]. Dithering has been shown to
mitigate the effect of static non-linearities such as element
mismatch in digital-analogue converters [10] as well as
dynamic non-linearities [11,12] such as glitches in digital-
analogue converters [13]–[15]. The dither probability density
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function (PDF) is known to modify the characteristics of a
non-linear system [16,17]. For uniform quantisation systems,
the expected value of the quantiser output can be linearised
and the variance of the error (the error power) can be made
independent of the quantiser input using a dither of triangular
PDF (TPDF) [7]. Hence, it is beneficial to generate dither
of jointly specified PDF and PSD criteria for purposes of
shaping the total error PSD via non-subtractive dither (NSD).
This can be done by passing an initially white Gaussian noise
through a linear noise colouring filter (PSD shaping) and
a static non-linear transform (PDF shaping) as in [18,19].
This approach had been adapted to and analysed for uniform
quantisation systems with arbitrary input signals [9]; where
shaping the error PSD at the quantiser output was shown to
be generally input dependent for any dither PDF choice of
bounded variance. Another approach is to first generate an
initially white noise with the desired PDF and then apply an
iterative shuffling procedure (PSD shaping) until the shuffled
dither sequence PSD approximates the desired one up to a
defined margin [20,21]. In this paper, we study using NSD of
TPDF generated via stochastic minimisation (SM) to shape
the total error PSD. SM utilises the shuffling approach; where
two elements of the dither sequence at the quantiser input
are stochastically interchanged such that an adapted metric,
defined to attain the desired PSD at the quantiser output, is
minimised.

A. Contributions

Results from [7] and the SM method from [20] are used to
provide a novel solution to shape the PSD of the total error
due to uniform quantisation via adaptive non-subtractive
dithering. The approach addresses the inherent dependency
of shaping the error PSD on the quantiser input signal. SM
is adapted to generate dither sequences attaining PSDs for
optimal signal reconstruction given subsequent filtering. By
uniformly segmenting a single quantisation level into several
regions, SM computes dither sequences for a limited number
of input values represented by the equidistant centres of said
regions. These sequences are saved in a look-up table (LUT);
where they are adaptively streamed each time the input value
is best approximated by a centre value indexed in the LUT.
Exploiting the symmetry of uniform quantisation, the use
of an amplitude folding index function allows reusing the
LUT to shape the error PSD for arbitrary input signals.
Simulations show that, independent of the quantiser input,
significantly improved error PSD shaping can be achieved
compared to the PSDs realisable using the method in [9].
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Fig. 1: Non-subtractively dithered quantiser with subsequent
filtering, with input x, dither d, quantiser input w, quantiser
output y, quantisation error q, total quantisation error ε,
reconstructed output yr and residual error ϵr.

II. ANALYTICAL FRAMEWORK

A. Uniform Quantisation

A uniform quantiser, Q in Fig. 1, with step-size δ ∈
R>0 and mid-tread behaviour can be defined as Q⊥(w) ≜
δ
⌊
w
δ + 1

2

⌋
; or with mid-rise behaviour and step-size ∆ ∈

R>0 which is defined as Q⊤(w) ≜ ∆
(⌊

w
∆

⌋
+ 1

2

)
where ⌊·⌋

denotes the floor operator. The quantisation error q(w) given
an input w is defined as the function

q(w) ≜ Q(w)− w . (1)

The output can then be modelled as:

y = w + q(w) = Q(w) . (2)

If we consider a mid-rise multi-bit quantiser with a word-
size of B bits, it has 2B output levels. With an output range
restricted between Vmin and Vmax the step-size is

∆ =
Vmax − Vmin

2B − 1
, (3)

and in this case Q(w) can be expressed as

Q⊤(w) = ∆

NT∑
i=1

(
Γ(w − Ti)−

1

2

)
, (4)

where NT = 2B − 1 is the number of quantisation lev-
els, and the step-functions have the thresholds Ti : i ∈
{1, 2, 3, ...NT }; where, Tj = (j − i)∆ + Ti for j > i and
T2B−1 = (Vmax+Vmin)/2. Where the Heaviside step-function
denoted Γ(u) is defined as

Γ(u) ≜

{
0 , u ≤ 0
1 , u > 0

. (5)

B. Error PSD Shaping via Non-subtractive Dithering (NSD)

Consider the quantiser configuration in Fig. 1. The total
error ε is defined as the difference between the output y and
input x, ε ≜ y − x, to distinguish it from the quantisation
error q in (1). For NSD, ε = Q(x+ d)− x = q(x+ d) + d.

For given specifications of the PSD Sε(ω) of the total
error ε it is generally desired to generate a dither d that
both linearises the uniform quantiser in mean, that is, E[y]
becomes a linear function of x, and induces a PSD Sε(ω)
having the required specifications.

As for the linearisation, first note that E[y] = x + E[ε].
Now from [7], we know that choosing a zero mean dither
with a TPDF will result in the total error ε being a zero

mean (E[ε] = 0) stationary process with E[ε2] = ∆2/4.
Hence, E[y] = x (quantiser linearisation can be achieved),
and Var(y) = E[ε2] is constant and independent of the value
of x (noise modulation effect can be mitigated). Furthermore,
it follows from the choice of a TPDF dither, that the PSD
Sy of the output y is just the sum of the PSD Sε of the total
error ε and the PSD Sx of the input x [7,8].

When it comes to spectrally shaping ε, it is ideally
desirable to attain Sε that has minimal power content at
frequencies where Sx has significant power content. For
example, the reconstructed output yr after the reconstruction
filter in Fig. 1 contains the low-pass power content of y
where Sx is concentrated; therefore, it is advantageous to
shape Sε so that it has a high-pass power content away
from Sx and optimised for attenuation by the subsequent
reconstruction filter (yr ≈ x).

The best error power spectral shaping performance achiev-
able for uniform quantisation using TPDF NSD is presented
in [9]. While analytical derivations illustrate how the shaping
of Sε depends on the input signal in uniform quantisation
systems employing NSD, it is demonstrated that selecting a
TPDF dither and designing the colouring filter to generate d
as if x were fixed at a quantisation threshold Ti effectively
decouples the filter synthesis step (necessary for shaping Sε)
from the dependence on x. However, this nonlinear filtering
method (NFM) imposes inherent restrictions on the set of
realisable PSDs. For applications that aim to achieve Sε

optimised for minimising the total power of ϵr (Var(ϵr) =
E[ϵ2r]) at the output of a specific reconstruction filter, these
limitations are shown to be quite restrictive.

C. Reconstruction Filters
Low-pass filtering subsequent to a dithered uniform quan-

tiser is a fundamental step often used to reduce repeated
spectra due to sampling, and tends to reduce quantisation
error improving the fidelity of the reconstructed signal. E.g.
for Digital-to-Analog Converters (DACs) applications, the
quantised signal is often sampled at a high rate where high-
frequency noise from quantisation folds back (aliases) into
the base-band, introducing artefacts. Using a reconstruction
filter (often a low-pass filter) as shown in Fig. 1, ensures
that only the desired signal is retained, preventing aliasing.
In [22], a ∆Σ-modulation framework uses feedback from the
output of the uniform quantiser (noise shaping filter driven by
q) to generate d that optimally shapes Sε to minimise Var(ϵr)
for a given infinite impulse response (IIR) reconstruction
filter H(z). In this work we consider r-th order Butterworth
filters of the form:

H(z) =
1

1 +
(

ωz

πωc

1−z−1

1+z−1

)2r , (6)

where ωc is the cut-off angular frequency, often designed to
match the bandwidth of the original signal to retain as much
useful information as possible and ωz is the throughput an-
gular frequency. As a benchmark to evaluate the performance
of the method proposed in Sec. III, we use [9] to produce a
TPDF d with the target specification being the optimal Sε to
minimise Var(ϵr) for a given H(z) as formulated by [22].
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III. STOCHASTICALLY MINIMISED ADAPTIVE
DITHERING

A. Dither Generation via Stochastic Minimisation (SM)
The method in [20] uses an iterative shuffling approach to

generate random sequences with jointly specified PSD and
PDF. Starting with an initial sequence of desired PDF, two
sequence indices are randomly chosen and then the sequence
values associated with these indices are interchanged in each
iteration. By advancing only the interchanges that minimise
an error metric to a target PSD, this PSD-shaping PDF-
preserving shuffling is repeated until the target PSD is
attained. In this work, the metric is adapted to minimise
Var(ϵr) for a given IIR reconstruction filter H(z) as dis-
cussed in Sec. II-B. Hence, by stochastically shuffling an
initial spectrally white TPDF dither sequence d0 to minimise
Var(ϵr) for a fixed x = u, SM (in Algorithm 1) returns the
dither sequence d optimised for that u. Note how given a
fixed x = u and H(z), SM indirectly obtains Sε optimised
for subsequent filtering.

Due to the symmetry of the uniform quantisation (e.g.
Q⊤(·) in (4)), note how for all xi, xj ∈ [Vmin +∆, Vmax −
∆] : xi ̸= xj that if (xi − Q⊤(xi)) = (xj − Q⊤(xj))
then εi = εj for any TPDF dither sequence d(:). Exploiting
this property allows for reduced computation time, since
the number of dither sequences required for generation via
SM can be limited. By uniformly decimating the ∆-wide
quantisation step into a finer grid of M ∈ Z>0 bands, the δ
spaced band centres (∆ = Mδ) can be used to approximate
(x − Q⊤(x)) ∈ [−∆/2,∆/2] into Q⊥(x − Q⊤(x)) which
has a space of only M values δ{−M/2...M/2} (if M is
even) or δ{(1 − M)/2...(M + 1)/2} (if M is odd). This
approximation is equivalent to representing x by Q⊥(x)
(δ-wide quantisation step). Consequently, SM generates M
unique dither sequences dk(:) : k ∈ {1, 2...M}, optimised
for a given H(z), and saves them to a LUT.

This is detailed in (Algorithm 1), where an added selection
refinement step primes d0 (an initial TPDF sequence of
length L) to ensure that E[Q(u + d0) − u] ≈ 0 for all u =
Q⊥(x−Q⊤(x)). This step mitigates noise modulation arte-
facts in the reference base-band.

B. Adaptive Dither Streaming
A block diagram for the proposed SMAD method is shown

in Fig. 2. By approximating x(t) ∈ [Vmin + ∆, Vmax −∆]
with the sampled finely quantised Q⊥(x(nTs)) (n ∈ Z≥0,
Ts =

2π
ωs

is the sampling period), the LUT of optimised dither
sequences from Sec. III-A can be utilised to shape Sε for an
arbitrary input signal. Provided a sufficiently fine grid is con-
sidered (M > 10) and adequate reference oversampling is
adopted (Ts ≤ min(Tref )

1000 ; 2π
min(Tref )

is the highest frequency
component in the reference band), Q⊥(x(nTs)) ≈ x(t). This
can be achieved by introducing an amplitude folding LUT
indexing function as follows:

𭟋M (u) ≜

(
Q⊥(u−Q⊤(u))

δ
mod M

)
+ 1 (7)

where u mod M ≜ u − M
⌊

u
M

⌋
. The index choice of the

k-th dither sequence dk to be streamed from the LUT to the

Algorithm 1 LUT Generation via SM, MATLAB
B = 5; % Number of quantisation bits
V max=10; V min=−10; % Dynamic range − upper/lower limit
LSB = V max−V min/(2ˆB−1); % Least Significant Bit (Delta)
Th = V min:LSB:V max; % Quantised Output Levels (2ˆB)
M = 64; % Number of finer grid bands (Delta = M*delta)
v delta = Th(2ˆ(B−1)):LSB/M:Th(2ˆ(B−1)+1);%delta−grid vals
TPDF=makedist('Triangular','A',−LSB,'B',0,'C',LSB);%(TPDF)
L = 1e3; % Streamed Dither Sequence Length
d Mid = random(TPDF, 1, L); % Initial Dither Sequence
LUT = zeros(M,L); % Look−Up−Table
%% IIR Butterworth filter H(z) Synthesis
Fc=1e3;Fz=1e6; % cutoff/ throughput frequency
r = 3; % Filter order
[S num,S den]=butter(r,Fc/(Fz/2),”low”);% H(z) Synthesis
%% Initialise SM−Alg Parameters
alpha=1e−4; beta=5e−3; NUM=39e1;
for k=1:M
%% Refine the selection of d 0 (best realisation out of L)

d 0 = d Mid;
for i=1:L
d Mid = random(TPDF, 1, 1e3);

if(abs(mean(v delta(k)−Q(d Mid+v delta(k),V min,
V max,B)))<abs(mean(v delta(k)−Q(d 0+v delta(
k),V min,V max,B))))

% See Q() in Eq(4)−Sec.II−A
d 0 = d Mid;

end
end

%% Stochastic Minimisation (Algorithm 1) for u=v delta(k)
d SM = SM(d 0,v delta(k),S num,S den,alpha,beta,NUM,

V min,V max,B);
LUT(k,:) = d SM; %Save d SM optimised for u=v delta(k)

end
%% Generation of a Dither Sequence using Stochastic

Minimization (SM)
function d = SM(d0, u, s num, s denum, alpha, beta, NUM,

Vmin,Vmax,Bit)
%% Inputs:
% d0 − Initial sequence of desired PDF (e.g., TPDF)
% u − Input level
% alpha − Target normalized filtered error variance (0

< alpha <= 1)
% beta − Marginal decrease ratio (0 < beta <= 1)
% NUM − Number of consecutive interchanges with

marginal decrease ratio < beta before termination
% s num, s denum − IIR H(z) (numerator, denumerator)
%% Output:
% d − Target sequence where SS1 < alpha
%% Initialize variables
SS1 = 1; d1 = d0; Var d0=var(filter(s num,s denum,Q(d0

+u,Vmin,Vmax,Bit)−u));
SS = SS1; SuccessCount = 0; TerminateCount = 0;
while (SS1 >= alpha) && (TerminateCount < NUM)

SS1 = var(filter(s num,s denum,Q(d1+u,Vmin,Vmax,
Bit)−u))/Var d0;

% Step 1: Randomly choose two indices for
interchange

idx = randperm(length(d1), 2);
j1 = idx(1); j2 = idx(2);
% Perform interchange while preserving PDF
d2 = d1; d2([j1, j2]) = d2([j2, j1]);
SS2 = var(filter(s num,s denum,Q(d2+u,Vmin,Vmax,

Bit)−u))/Var d0;
% Step 2: Commit to the interchange if it

minimizes SS1
if (SS2 < SS1)

d1 = d2; SS = [SS; SS2]; SS1 = SS2;
SuccessCount = SuccessCount + 1;

end
% Step 3: Check termination condition
if (SuccessCount > NUM)

TerminateCount = 0;
for i = NUM:−1:1

if ((SS(end−i) − SS(end−i+1)) / SS(end−i)
< beta)
TerminateCount = TerminateCount + 1;

end
end

end
end
d = d1; % Return the optimized dither sequence

end
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Fig. 2: Stochastically minimised adaptive dithering (SMAD)
approach: sampled input x(nTs), input dependent LUT index
k, streamed SM dither dk, quantiser input w, quantiser output
y and reconstructed output yr.

Fig. 3: Operating SMAD to reconstruct recorded signals: A)
Various analogue realisations of 1 kHz band-limited input
signals (sinusoidal, triangular, and an arbitrary random walk)
x(t) ∈ [Vmin + ∆, Vmax − ∆]. Their digital recordings
Q⊥(x(nTs)) when over-sampled at 1 MHz and finely quan-
tised by a (9, 10, and 11)-Bit uniform quantiser, respectively.
Re-quantised for reconstruction by a reduced resolution 5-Bit
quantiser ≈ Q⊤(x(t)). B) The LUT index k = 𭟋M (x(nTs))
(𭟋M from (7)) to stream dk (in (8)) corresponding to x(nTs).

quantiser input w is adapted such that it is optimised for the
current value of the sampled reference; k = 𭟋M (x(nTs)).
Accordingly:

w

((
n :

1

L
: n+

(L− 1)

L

)
Ts

)
= Q⊥(x(nTs))+dk(1 : L)

(8)
Note how this adaptive streaming approach effectively neces-
sitates an angular frequency throughput capability of ωz =
Lωs (a minimum quantiser output update rate requirement).

IV. SIMULATIONS

In the simulations, a mid-rise 5-bit uniform quantiser of
the form in (4) is used (see Fig. 2) where the output range
is set to Vmax = −Vmin = 10. Fig. 3 illustrates how SMAD
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Fig. 4: Normalised single-sided total error PSD Sε(ω)/Sη:
SMAD vs. NFM and the theoretical target ∆Σ-Opt. PSDs
(required spectral specification necessary to use NFM) as
calculated in [22] for the filters (H1, H2, H3).

TABLE I: Summary of simulation results NFM vs SMAD.
Case Parameters Filters Method [Var(ϵr)/Var(ε)]

# L M Shaping Recon. NFM SMAD
1 1000 64 H1 H1 3.49 × 10−2 8.07 × 10−3

2 1000 64 H1 R 3.50 × 10−6 1.22 × 10−10

3 1000 32 H1 H1 3.49 × 10−2 8.86 × 10−3

4 1000 32 H1 R 4.83 × 10−6 9.19 × 10−10

5 1000 64 H2 H2 3.54 × 10−3 2.13 × 10−4

6 1000 64 H2 R 3.27 × 10−6 4.45 × 10−9

7 1000 16 H2 H2 3.55 × 10−3 2.17 × 10−4

8 1000 16 H2 R 3.29 × 10−6 5.45 × 10−9

9 1000 64 H3 H3 3.54 × 10−4 3.64 × 10−6

10 1000 64 H3 R 4.64 × 10−6 3.86 × 10−9

11 300 64 H3 H3 3.64 × 10−4 2.97 × 10−6

12 300 64 H3 R 3.25 × 10−6 2.60 × 10−9

13 300 4 H2 H2 3.53 × 10−3 1.23 × 10−4

14 300 4 H2 R 3.41 × 10−6 2.28 × 10−11

can be adapted to reconstruct arbitrary reference signals for
various choices of the finer grid (∆ = Mδ) as discussed
in Sec. III-A by adapting 𭟋M (from (7)) accordingly, as
discussed in Sec. III-B. Let η(t) be a white, unity variance
Gaussian process sampled at Lωs rad/s (i.e. its single-sided
PSD Sη(ω) = 2π/Lωs); then the normalised single-sided
PSD responses Sε/Sη(ω) for various x(t) (from Fig. 3-
A) are shown in Fig. 4. The reference records (sampled at
ωs = 2π Mrad/s, with M = 64) are dithered (NFM vs.
SMAD) prior to reconstruction where each record utilises
a LUT (L = 1 × 103) optimised for filters of the form
in (6): H1, H2, H3 with r = 3, ωz = Lωs and ωc/Lωs =
10−1, 10−2, 10−3; respectively. Tab. I provides case sim-
ulations of these reference signals designed to investigate
the effect of varying parameters L, M , and the filtering
choice for spectral shaping and reconstruction. Note how
since all x(t) ∈ [Vmin +∆, Vmax −∆] considered here are
1 kHz band-limited, a reconstruction filter R with r = 3,
ωz = Lωs and ωc/Lωs = 10−5 is suitable to restore the
base-band content. However, seeing how SMAD requires
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a significantly larger bandwidth for operation (due to both
“true” (Ts ≤ min(Tref)/1000) and artificial (ωz = Lωs)
oversampling requirements), using SMAD “as if” H1, H2,
H3 is used for reconstruction, while it is R in reality gives
rise to the opportunity of shaping the error content beyond
the reference base-band as well. This may be interesting
for applications where minimising the noise content even
at certain frequency bands higher than reference base-band
is beneficial.

V. RESULTS AND DISCUSSION

Note that all subsequent discussions and comparisons are
viewed in light of the approximation x̂ ≜ Q⊥(x(nTs)) ≈
x(t) inherent to the operation of SMAD as explained in
Sec. III-B (i.e. ε = y− x̂). This shifts the appropriateness of
using SMAD over NFM to applications where the reference
signal is already recorded digitally (discretised) or applica-
tions where replacing x with x̂ is either inevitable or an
acceptable compromise in the application context. Otherwise,
it is evident that given an output update rate of ωz , the
available sampling budget to use SMAD is restricted to ωz/L
whereas it is ≈ ωz for NFM. This has significance in terms
of physical limitations to sampling-rate in applications.

Fig. 4 illustrates how (for H1, H2, H3) NFM fails to
meet its target for all ω where the ∆Σ-Opt.-specification
Sε/Sη(ω) < ∆2/12. However, SMAD performance is not
bounded by the quantisation noise floor associated with the
resolution reduction at the interface (SMAD achieves almost
three orders of magnitude of improved attenuation in the case
of H3 within the filter’s pass-band compared to NFM).

From Tab. I, note how Var(ϵr)/Var(ε) is proportional to
ωc/Lωs for any given choice of the reconstruction filter using
both methods (this is expected since Var(ε) is constant and
the residual noise should be proportional to the filter pass-
band). However, factoring out this aspect (normalising by
ωc/Lωs) in cases 1, 5, and 9 indicates that SMAD exhibits
improved attenuation with narrower filter pass-bands while
NFM performance is bounded to ≈ 33% (i.e. ≈ 33% of
the total error power ∆2/4 which is the quantisation noise
floor ∆2/12). This is in fact corroborated by the results
shown in Fig. 4. Comparing cases 9-12 (similar x̂) suggests
that reducing L (from 1000 to 300) does not deteriorate
SMAD’s performance (this is advantageous as it improves
spectrum utilisation). Unfortunately, choosing L < 300 will
deteriorate the performance (from attempts unreported in the
table). Now considering the effect of varying M (e.g. cases
1-4 or 5-8), one should have in mind that this by default
changes x̂. Hence, it can be interpreted as shifting the virtual
quantisation noise floor level δ2/12 (highlighted in Fig. 4
for M = 64) reflecting the new SMAD performance upper
bound. E.g. the SMAD performance in case 2 means that the
5-bit quantised, R-filtered output (R(z)y) will be perceived
as if it were reconstructed by a 10-bit quantiser (yr ≈ x̂).

VI. CONCLUSIONS

It was demonstrated by way of a numerical algorithm that
the proposed adaptive dithering method can, for arbitrary
references, shape the spectral distribution of the total error

power for a uniform quantiser. In practice, the method could
be limited by the maximum available switching frequency
in a hardware implementation. However, for applications of
reconstructing recorded signals with high perceived fidelity,
the method provides significantly improved performance
compared to existing non-subtractive dithering methods.
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