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Abstract—This paper investigates time-delay and Doppler
estimation in the presence of unknown heavy-tailed disturbances.
Traditional approaches, such as the maximum likelihood estima-
tor, achieve optimal mean squared error performance under the
unrealistic assumption of perfect prior knowledge of the noise
distribution. To address this limitation, previous work introduced
a rank-based and distribution-free R-estimator, which is shown
to be parametrically efficient, attaining the classical Cramér-Rao
Bound irrespective of the unknown noise distribution, provided
it belongs to the family of Complex Elliptically Symmetric
distributions. The aim of this paper is to analyse and compare the
performance of the R-estimator with an M -estimator, a widely
used robust estimation approach. Specifically, we analyse their
statistical efficiency for the time-delay and Doppler estimation
problem, under various noise conditions. Furthermore, we pro-
pose to combine both estimators, leveraging their complementary
strengths to enhance estimation performance. Numerical simula-
tions illustrate the benefits of this hybrid approach.

Index Terms—Complex elliptically symetric distribution, Semi-
parametric Cramér-Rao bound, R-estimators, time-delay and
Doppler estimation, band-limited signals.

I. INTRODUCTION

Time-delay and Doppler estimation are critical tasks in nu-
merous engineering applications, including communications,
radar, and navigation systems [1]–[6]. These parameters play
a fundamental role in signal synchronization, target tracking,
and geolocation, making their accurate estimation essential for
system performance. A key aspect of this problem is determin-
ing the best achievable accuracy, typically measured in terms
of mean squared error (MSE). Under standard parametric
assumptions, the Cramér-Rao Bound (CRB) [7], [8] provides
a theoretical lower bound on the variance of any unbiased
estimator. Moreover, it is well known that the Maximum
Likelihood Estimator (MLE) asymptotically attains the CRB
under certain regularity conditions [9]. Consequently, exten-
sive research has been conducted to derive CRB formulations
for time-delay and Doppler estimation across various signal
models, spanning both narrow-band and wide-band signals [2],
[10]–[18]. In real-world applications, however, the assumed
signal model at the receiver may deviate from the actual one.
Several recent studies have investigated such mismatches. In
[19]–[22], mismatches arise due to multipath, interference,
or high receiver dynamics. Furthermore, in [23], [24], the
impact of non-Gaussian, heavy-tailed Complex Elliptically
Symmetric (CES) noise distributions has been analyzed, where

the assumed model is a standard complex normal distribution.
These studies adopt the theory of model misspecification [25],
[26], where estimation performance is characterized in terms
of pseudo-true parameters and the Misspecified CRB (MCRB).
Specifically, the MCRB provides a lower bound to the error
covariance of the Misspecified MLE (MMLE) when the as-
sumed model does not match the true distribution [25, Theo.
2], [26, Sec. 4.4.3]. Notably, even when the noise follows
a heavy-tailed CES distribution, the Gaussian-based MMLE
remains

√
N -consistent with respect to the true parameters as

the number of observations increases.
Despite its consistency, the MMLE does not guarantee

asymptotic efficiency under unknown noise distributions. To
address this issue, semiparametric estimation theory provides
a rigorous framework for designing robust yet efficient estima-
tors, as recently explored in [27]–[30] for CES distributions.
The semiparametric framework allows for the derivation of
a lower bound known as the Semiparametric CRB (SCRB),
which represents the lowest achievable MSE for any consistent
estimator under an unspecified CES distribution. Crucially, for
time-delay and Doppler estimation, it can be shown that the
SCRB coincides with the CRB of the true distribution [28].
This implies that a semiparametric efficient estimator will also
be parametrically efficient.

In our previous work [31], a rank-based, distribution-free R-
estimator was proposed, achieving semiparametric efficiency,
i.e., attaining the CRB regardless of the unknown CES noise
distribution. In this study, we extend this analysis by compar-
ing the performance of the R-estimator with an M -estimator,
a widely used robust alternative that is less sensitive to heavy-
tailed disturbances. We examine their statistical perfomance
under unknown non-Gaussian noise conditions. Furthermore,
we propose to combine both estimators, leveraging their re-
spective advantages to enhance estimation performance.

II. SIGNAL MODEL

We consider a system where a band-limited signal s(t),
with bandwidth B, is transmitted over a carrier frequency fc
(λc = c/fc, ωc = 2πfc) from a transmitter T at position
pT (t) to a receiver R at position pR(t). Assuming a first-
order approximation, the transmitted distance is given by

pTR ≈ c(τ̄ + b̄t), (1)
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where τ̄ = ∥pT (0)−pR(0)∥
c and b̄ = ∥v∥

c , with v denoting the
relative velocity vector between the transmitter and the re-
ceiver. Under the narrowband assumption, the received signal
after baseband demodulation can be expressed as [10], [16]

x (t; η̄) = ᾱs (t− τ̄) e−j2πfc(b̄(t−τ̄)) + n (t) , (2)

where η̄ =
(
τ̄ , b̄

)T
and ᾱ is a complex gain. The discrete

vector signal model is constructed from N = N1 − N2 + 1
samples taken at Ts = 1/Fs = 1/B:

x = ᾱµ(η̄) + n, (3)

where x = (. . . , x (kTs) , . . .)
⊤, n = (. . . , n (kTs), . . .)

⊤

represents the noise samples, and N1 ≤ k ≤ N2. The
noise samples n(kTs) are assumed to be independent and
identically distributed (i.i.d.) following a CES distribution, i.e.,
n(kTs) ∼ CES(0, σ̄2

n, ḡ), where σ̄2
n is the unknown noise

power, and ḡ is an unspecified density generator [32]. The
signal component is given by

µ(η̄) = (. . . , s(kTs − τ̄)e−j2πfc(b̄(kTs−τ̄), . . .)⊤. (4)

The unknown deterministic parameters are collected in the
vector ϵ̄⊤ = (σ̄2

n, ρ̄, Φ̄, η̄
⊤) = (σ̄2

n, θ̄
⊤), where ᾱ = ρ̄ejΦ̄

with ρ̄ ∈ R+ and 0 ≤ Φ̄ ≤ 2π. The underlying data-generating
model is then characterized by the probability density function

pϵ̄(x; ϵ̄) = ΠN2

k=N1
pϵ̄(xk, ϵ̄), (5)

with
pϵ̄(xk, ϵ̄) = CES(ᾱµk(η̄), σ̄

2
n, ḡ). (6)

Since ḡ is left unspecified, the likelihood function is un-
known, preventing the derivation of a MLE for ϵ̄. For further
reference, we recall that, according to the Stochastic Repre-
sentation Theorem [32, Theo. 3], the received signal can be
rewritten as

xk =d ᾱµk(η̄) +
√
Qkσ̄nuk =d fk(θ̄) +

√
Qσ̄nuk, (7)

where uk is a complex univariate random variable uniformly
distributed on CS ≜ {u ∈ C||u| = 1}, i.e., uk ∼ U(CS).
Moreover,

Qk ≜ |xk − fk(θ̄)|2/σ̄2
n =d Q (8)

is a positive random variable independent of uk, with probabil-
ity density function pQ(q) = δ−1

g ḡ(q), where δg ≜
∫∞
0
ḡ(q)dq

is a normalization constant (see [32, Eq. (19)]). To address the
scale ambiguity between σ̄2

n and ḡ, we impose the constraint
E{Q} = 1, which allows σ̄2

n to be interpreted as the statistical
power P of the received data xk [32, Sec. III.C].

A. Closed-form expression of the SCRB for θ̄

In accordance with semiparametric theory [33], the absence
of prior knowledge regarding the density generator ḡ can be
incorporated into the derivation of the semiparametric Cramér-
Rao Bound (SCRB) for θ̄ by treating ḡ as a functional nuisance
parameter. Specifically, the SCRB is defined as the inverse
of the Semiparametric Efficient Fisher Information Matrix

(SFIM). The explicit computation of the SFIM for CES-
distributed data can be achieved using the Semiparametric
Slepian-Bangs formula, which has been established under
broad conditions in [28, eq.(47)]. For our particular setting,
it can be shown that the SFIM coincides with the Fisher In-
formation Matrix (FIM) of the true distribution. Consequently,
we obtain a closed-form expression given by:

I(θ̄) =
2E{Qψ̄(Q)2}

σ̄2
n

ℜ

{(
∂ᾱµ(η̄)

∂θ

)H (
∂ᾱµ(η̄)

∂θ

)}
,

(9)
where ψ̄(t) ≜ d ln ḡ(t)/dt, Q is as defined in (7), and the
expectation is taken with respect to its density pQ. Given that
the SFIM matches the FIM, it follows directly that:

SCRB(θ̄|ḡ) = I(θ̄)−1 = CRB(θ̄) ∀ḡ. (10)

To conclude this section, we note that a closed-form expres-
sion for I(θ̄|ḡ) can be obtained as follows [16]:

I(θ̄) = E{Qψ̄(Q)2}K(θ̄), K(θ̄) ≜
2Fs
σ̄2
n

ℜ
{
QWQH

}
(11)

where W is defined as:

W =

w1 w∗
2 w∗

3

w2 w2,2 w∗
4

w3 w4 w3,3

 . (12)

The elements of W are expressed in terms of the baseband
signal samples as follows:

w1 =
1

Fs
sHs, w2 =

1

F 2
s

sHDs, w3 = sHΛs,

w4 =
1

Fs
sHDΛs, w2,2 =

1

F 3
s

sHD2s, w3,3 = Fss
HVs.

The matrix Q is given by:

Q =


1 0 0
jρ̄ 0 0

jρ̄2πfcb̄ 0 −ρ̄
0 −jρ̄2πfc 0

 . (13)

where s = (. . . , s(kTs), . . .)
⊤
N1≤k≤N2

represents the base-
band signal samples, and D is defined as:

D = diag (. . . , k, . . .)N1≤k≤N2
. (14)

Finally, the matrices Λ and V are defined element-wise as:

(Λ)k,k′ =

{
(−1)|k−k′|
k−k′ if k′ ̸= k,

0 if k′ = k.
(15)

(V)k,k′ =

{
(−1)|k−k

′| 2
(k−k′)2 if k′ ̸= k,

π2

3 if k′ = k.
(16)
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III. EFFICIENT R-ESTIMATOR FOR θ̄

The R-estimator for θ̄ has been already proposed in [31]:

θ̂R = θ⋆ + (
√
Nα̂)−1[K(θ⋆)]−1∆̃N (θ⋆n). (17)

where θ⋆ is a preliminary estimator, i.e. a
√
N−consistent,

but not necessarily efficient, estimator of θ̄ and K(θ⋆) can
be simply calculated directly by substituting the estimates of
the preliminary estimator θ⋆ in equation (11). To compute α̂
and ∆̃N (θ⋆n), we based on rank theory. Ranks are important
in robust statistics due to their distribution-free property.
Following the general approach discussed in [29], [34], we
introduce the following quantities:

Q⋆k ≜ |xk − fk(θ
⋆)|2/(σ⋆n)2, (18)

u⋆k ≜ (xk − fk(θ
⋆)) /

(
σ⋆n

√
Q⋆k

)
. (19)

We now define the ranks {r⋆k}
N2

k=N1
of the (continuous)

real random variables {Q⋆k}
N2

k=N1
as their position index after

having ordered them in an ascending way the ordered statistics
[35, Ch. 13]. Using this, we can provide a rank-based approx-
imation for ∆N (θ⋆) and α̂. In fact, for a given score function
M(·), 1 we have:

∆̃N (θ⋆) ≜
−2√
Nσ⋆n

N2∑
k=N1

M

(
rk

N + 1

)
ℜ [(u⋆k)

∗∇θfk(θ
⋆)] .

(20)
whose closed-form has been derived in [31] as:

∆̃N (θ⋆) = (2Fs)/(
√
Nσ⋆)ℜ

{
ejΦ

⋆

Q⋆we

}
. (21)

with Q⋆ computed by substituting the estimates of the pre-
liminary estimator θ⋆ in equation (13). Moreover, we =
(we1 , we2 , we3)

Twhich each elements derived in [31],

we1 =
1

Fs
UHV ∆,0

(
τ⋆

Ts

)
U

(
fcb

⋆

Fs

)
s,

we2 =
1

F 2
s

UHV ∆,0

(
τ⋆

Ts

)
U

(
fcb

⋆

Fs

)
Ds,

we3 = UHV ∆,1

(
τ⋆

Ts

)
U

(
fcb

⋆

Fs

)
s + jwcb

⋆we1 ,

with U = (· · · ,Uk =M
(

rk
N+1

)
(u⋆k), · · · )T and

U(p) = diag(· · · , e−j2πpk, · · · )N1≤k≤N2 , (22)(
V ∆,1 (q)

)
k,l

=
(cos(π(k − l − q))− sinc(k − l − q))

k − l − q
(23)(

V ∆,0 (q)
)
k,l

= sinc(k − l − q). (24)

Moreover the term α̂, that represents a consistent estimator for
E{Qψ̄(Q)2} is given by [37]:

α̂ =
(σ⋆n)

2

N

||∆̃N (θ⋆ +N−1/2v0)− ∆̃N (θ⋆)||
||K(θ⋆)v0||

, (25)

1The family of score functions is defined in [36, Sect. 2.2], [35, Ch. 13]

where v0 ∼ N (0, ϱI) is a “small perturbation” vector.
Regarding the score function M(·) many choices are possible
(see e.g. [29]). However, the one that provide a good trade
of between semiparametric efficiency and robustness is the
complex van der Waerden score function:

MvdW (t) ≜
√
Φ−1
G (t), t ∈ (0, 1), (26)

where Φ−1
G indicates the inverse function of the cdf of a

Gamma-distributed random variable with parameters (1, 1).
Finally, a good choice for the preliminary estimator (θ⋆)⊤ =
[ρ⋆,Φ⋆, (η⋆)⊤] and σ⋆n is the Gaussian-based MMLE since,
as it was shown in [23], [24], is

√
N -consistent as required.

The estimates of the Gaussian-based MMLE θ⋆ are given by:

η⋆ = argmax
η

∥∥Πµ(η)x
∥∥2 (27)

ρ⋆ =
∣∣∣[µH (η⋆)µ (η⋆)

]−1
µH (η⋆)x

∣∣∣ (28)

Φ⋆ = arg
{[

µH (η⋆)µ (η⋆)
]−1

µH (η⋆)x
}

(29)

where ΠA = A
(
AHA

)−1
AH is the orthogonal projector

over S, with S = span (A) and A a matrix. Similarly, as
preliminary estimator of the noise variance, we can used the
MMLE, which yields to:

(σ⋆n)
2 = ∥x− ρ⋆ejΦ

⋆

µ(η⋆)∥2/N. (30)

IV. M -ESTIMATOR FOR θ̄

The M -estimator is a general class of estimators that
generalizes the ML estimator. In fact, it is based on the
generalization of a function that may be different from the
likelihood one. Given a general loss function ρ(·), the M -
estimator for a parameter θ̄ is the solution to the following
optimization problem:

θ̂M = argmin
θ

N∑
k=1

ρ(xk,θ, σ̄n), (31)

In Gaussian-based inference, the score function should ideally
be chosen to minimize the expected squared error. In robust
statistics, the Huber M -estimator is often used to reduce the
influence of outliers by employing a modified loss function.
The Huber loss function is defined as:

ρδ(v) =

{
v2 if |v| ≤ δ,

δ(2|v| − δ) if |v| > δ,
(32)

where vk = xk−fk(θ) is the residual, and δ is a threshold that
controls the transition between quadratic and linear behaviour.
The Huber estimator minimizes the sum of these losses across
all data points:

θ̂M = argmin
θ

N∑
k=1

ρδ(vk/σ̂n). (33)

where an auxilary estimate σ̂n of the scale σ̄n is required. The
parameter δ is chosen based on the target asymptotic relative
efficiency (ARE) at a given distribution. Thus, δ0.95 = 1.345
indicates that the M -estimator based on Huber’s loss function
poses an ARE of 0.95 at the standard normal distribution.
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A. Iterative Reweighted Least Squares (IRLS)

The M -estimation problem can be solved using the Iter-
atively Reweighted Least Squares (IRLS) method. The basic
idea behind IRLS is to iteratively solve weighted least squares
problems by updating the weights at each step. This process
is efficient for solving M -estimators with non-quadratic loss
functions. The IRLS algorithm for the Huber estimator pro-
ceeds as follows:

1) Initialize θ̂
(0)
M and σ̂n(0) 2. In our simulations, we used

the Gaussian-based MMLE estimates (equations (27)-
(30)) as they are

√
N -consistent.

2) Iterate until convergence for j:

a) Update residual v(j)k =
(
xk − fk(θ̂

(j)
M )

)
.

b) Update scale σ̂(j)
n = ∥v(j)∥/

√
N.

c) Update weight W = diag

(
ψ(v

(j)
k /σ̂(j)

n )

v
(j)
k /σ̂

(j)
n

)
.

d) Compute the weighted least square
θ̂
(j)
M = argminθ∥v(j)∥2W= argminθ∥

√
Wv(j)∥2

with diag(·) operator mapping a vector to the diagonal ele-
ments of a matrix and ψ(v) = δρ(v)/δv the score function.
For the Huber loss function:

ψδ(v) =

{
v, if |v| ≤ δ,

δ · sgn(v), if |v| > δ.
(34)

and since v is a complex number, sgn(v) = v/|v|, which
extracts the “direction” of the complex number while nor-
malizing it to have unit magnitude. Moreover, the solution of
the weighted least square for the parameter of interest yields

to η̂M = argmaxη

∥∥∥Π√
Wµ(η)

√
Wx

∥∥∥2. Finally, the conver-

gence is reached when ∥θ̂(j)
M − θ̂

(j−1)
M ∥< ϵ. However, with a

single iteration the algorithm already shows a (please refers to
Section V) considerable improvement over the MMLE.

V. SIMULATION AND DISCUSSION

We consider a scenario in which a GPS L1 C/A signal [6] is
received by a GNSS receiver. The true signal model assumes
that the noise follows a complex-centered t-distribution [26,
Sec. 4.6.1.1] with υ = 1.5 degrees of freedom (or shape
parameter), which controls the deviation from Gaussianity,
and a scale parameter µ. The second-order modular variate
Q of a t-distribution follows a scaled F -distribution such
that Q ∼ µ−1F2,2υ [32, Sec. IV.A]. To satisfy the condition
E{Q} = 1, the scale parameter must be set as µ = υ

υ−1 .
Furthermore, for the t-distribution, it has been shown in [28]
that E{Qψ̄(Q)2} = µ(υ+1)

υ+2 , and the output SNR is given by
SNRout = |ᾱ|2sHs/σ̄2

n.
Figures 1 and 2 illustrate the root mean square error

(
√
MSE) performance of the MMLE, the M -estimator de-

rived in (32) with δ0.95 = 1.345 and one iteration, and two
R-estimators derived in (17). The first R-estimator uses the
MMLE as a preliminary estimator, while the second one uses

2The normalized median absolute deviation (MAD) can be also used as a
scale estimator.

the output of the M -estimator as its preliminary estimator.
The evaluation is conducted for the parameters of interest,
η̄T = [τ̄ , b̄], as a function of SNRout. The analysis considers
a GNSS receiver operating at a sampling frequency of Fs = 4
MHz with an integration time of 1 ms. The results are obtained
from 1000 Monte Carlo iterations.

The results demonstrate that the
√
MSE of the MMLE

asymptotically converges to the MCRB, which coincides with
the Complex-Gaussian CRB, confirming the findings in [24].
Additionally, we observe that the RMSE of the R-estimator in
(17) also asymptotically converges to the SCRB given in (9).
The M -estimator converges asymptotically to an intermediate
performance level between the MCRB and the SCRB, showing
that it is not asymptotically efficient. However, it converges
faster than both the MMLE and the R-estimator. Consequently,
using the M -estimator as a preliminary estimator for the R-
estimator combines desirable properties—faster convergence
and asymptotic efficiency. However, this comes at the cost of
increased computational complexity.

VI. CONCLUSION

In this work, we analyzed the performance of time-delay
and Doppler estimation in the presence of non-Gaussian
noise. Specifically, we considered the M -estimator, and R-
estimator, highlighting their theoretical properties and asymp-
totic behavior. The R-estimator, constructed using rank-based
statistics, achieves asymptotic efficiency with respect to the
SCRB that for our application, is equal to the classical CRB.
Consequently, the R-estimator achieves the optimal parametric
performance without any a-priori knowledge of the noise
distribution. On the other hand, the M -estimator exhibits an
intermediate performance between the MCRB and SCRB,
showing that it is not fully efficient but converges faster than
the other estimators. By leveraging the M -estimator as a
preliminary step for the R-estimator, we achieve a trade-off
between faster convergence and asymptotic efficiency at the
cost of increased computational complexity.
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[21] L. Ortega, C. Lubeigt, J. Vilà-Valls, and E. Chaumette, “On gnss
synchronization performance degradation under interference scenarios:
Bias and misspecified cramér-rao bounds,” NAVIGATION: Journal of
the Institute of Navigation, vol. 70, no. 4, 2023.

[22] L. Ortega and S. Fortunati, “Misspecified Time-delay and Doppler
estimation over high dynamics non-Gaussian scenarios,” in 2024 32nd
European Signal Processing Conference (EUSIPCO), Lyon, France,
August 2024, pp. 2297–2301.

[23] L. Ortega and S. Fortunati, “Misspecified time-delay and doppler
estimation over non gaussian scenarios,” in ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2024, pp. 9346–9350.

[24] S. Fortunati and L. Ortega, “On the efficiency of misspecified gaussian
inference in nonlinear regression: application to time-delay and doppler
estimation,” Signal Processing, vol. 225, p. 109614, 2024.

[25] S. Fortunati, F. Gini, M. S. Greco, and C. D. Richmond, “Performance
bounds for parameter estimation under misspecified models: Fundamen-
tal findings and applications,” IEEE Signal Process. Mag., vol. 34, no. 6,
pp. 142–157, 2017.

[26] S. Fortunati, F. Gini, and M. S. Greco, “Chapter 4 - Parameter bounds
under misspecified models for adaptive radar detection,” in Academic
Press Library in Signal Processing, Volume 7, R. Chellappa and
S. Theodoridis, Eds. Academic Press, 2018, pp. 197–252.

[27] S. Fortunati, F. Gini, M. Greco, A. M. Zoubir, and M. Rangaswamy,
“Semiparametric inference and lower bounds for real elliptically sym-
metric distributions,” IEEE Transactions on Signal Processing, vol. 67,
no. 1, pp. 164–177, 2019.

[28] S. Fortunati, F. Gini, M. S. Greco, A. Zoubir, and M. Rangaswamy,
“Semiparametric CRB and Slepian-Bangs formulas for complex ellipti-
cally symmetric distributions,” IEEE Transactions on Signal Processing,
vol. 67, no. 20, pp. 5352–5364, 2019.

[29] S. Fortunati, A. Renaux, and F. Pascal, “Robust semiparametric effi-
cient estimators in complex elliptically symmetric distributions,” IEEE
Transactions on Signal Processing, vol. 68, pp. 5003–5015, 2020.

[30] S. Fortunati, “Semiparametric estimation in elliptical distributions,” in
Elliptically Symmetric Distributions in Signal Processing and Machine
Learning, J. Delams, M. E. Korso, S. Fortunati, and F. Pascal, Eds.
Springer, 2024.

[31] L. Ortega and S. Fortunati, “Robust semiparametric efficient estimator
for time delay and doppler estimation,” Submitted to IEEE SPL, 2025.

[32] E. Ollila, D. E. Tyler, V. Koivunen, and H. V. Poor, “Complex elliptically
symmetric distributions: Survey, new results and applications,” IEEE
Transactions on Signal Processing, vol. 60, no. 11, pp. 5597–5625, 2012.

[33] P. Bickel, C. Klaassen, Y. Ritov, and J. Wellner, Efficient and Adaptive
Estimation for Semiparametric Models. Johns Hopkins University
Press, 1993.

[34] M. Hallin and B. J. M. Werker, “Semi-parametric efficiency, distribution-
freeness and invariance,” Bernoulli, vol. 9, no. 1, pp. 137–165, 2003.

[35] A. W. van der Vaart, Asymptotic Statistics, ser. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press,
1998.

[36] M. Hallin, D. Paindaveine, and T. Verdebout, “Optimal rank-based
testing for principal components,” The Annals of Statistics, vol. 38, no. 6,
pp. 3245–3299, 12 2010.

[37] M. Hallin, H. Oja, and D. Paindaveine, “Semiparametrically efficient
rank-based inference for shape II. Optimal R-estimation of shape,” The
Annals of Statistics, vol. 34, no. 6, pp. 2757–2789, 2006.

2716


