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Abstract—This paper addresses the problem of robust blind
source separation (BSS) in the presence of non-Gaussian heavy-
tailed noise. We focus on overdetermined linear mixtures of
temporally correlated stationary signals, which are corrupted by
additive stationary noise. Within this framework, we introduce
a new separation method called measure-transformed second-
order blind identification (MT-SOBI). This method operates
by transforming pairwise joint probability measures of time-
lagged samples. The considered transform is generated by a non-
negative data-weighting function, referred to as MT-function. We
demonstrate that proper selection of the MT-function can result
in significant resilience to heavy-tailed noise while preserving
the spatial correlation structure essential to perform separation.
The MT-SOBI is illustrated in a simulation study highlighting its
advantages over the standard SOBI and other robust extensions.

Index Terms—Blind source separation, parameter estimation,
probability measure transform, robust statistics.

I. INTRODUCTION

Blind source separation (BSS) is a fundamental problem in
statistical signal processing, aiming to recover latent source
signals from an observed mixture without prior knowledge of
the source distributions or the mixing process [1]. BSS plays
an important role in speech enhancement, biomedical signal
processing, communications, and image processing.

The second-order blind identification (SOBI) algorithm [2]
is a well-known method for separating linear mixtures of spa-
tially uncorrelated sources by leveraging temporal correlations.
The conventional SOBI is formulated under a noisy observa-
tion model, where the noise is additive and spatially white. In
SOBI, the data undergoes pre-whitening using a whitening
matrix derived from the sample covariance matrix. Source
separation is then performed via orthogonal approximate joint
diagonalization of sample autocorrelation matrices at different
time-lags, utilizing successive Givens rotations.

However, the sample covariance and autocorrelation estima-
tors are highly sensitive to heavy-tailed noise, which produces
outliers. Under such a scenario, these estimators provide
inaccurate representations of the underlying covariance and
autocorrelation structures, leading to compromised separation
performance.

To address this limitation, several robust SOBI variants have
been proposed. In [3] and [4], the SAM-SOBI and eSAM-
SOBI algorithms were introduced, respectively, wherein the
sample autocorrelation matrices are replaced by robust em-
pirical sign-autocorrelation matrices. The key distinction be-
tween the two lies in the estimation of the whitening matrix:
the former employs an empirical sign-covariance matrix [5],
while the latter applies the affine equivariant Hettmansperger-
Randles covariance estimator [6] instead. It is important to
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note that both SAM-SOBI and eSAM-SOBI are formulated
under the assumption of a noiseless mixing model, making
them more suitable when data contamination follows Huber’s
e-contamination model [7] rather than when affected by addi-
tive heavy-tailed noise. In the presence of additive noise, the
sign-autocorrelation matrix does not necessarily preserve the
spatial correlation structure, which is essential for consistent
estimation of the mixing matrix. Additionally, the influence
function [8] of the empirical sign-autocorrelation matrix,
which quantifies its sensitivity to outliers, is bounded, meaning
that this estimator is B-robust [8]. However, as demonstrated
in [9, Sec. III-A] for the empirical sign-covariance matrix, the
influence function does not vanish as the outlier’s magnitude
increases. This implies that while the estimator is resilient
against a small amount of contamination, it does not reject
large-norm outliers.

Another robust SOBI adaptation, called MF-SOBI [10],
incorporates median filtering as a preprocessing step to miti-
gate outliers. However, it is important to note that non-linear
median filtering alters the linear mixing structure, potentially
leading to inconsistent estimation of the mixing matrix. Lastly,
[11] introduced a robust recursive SOBI extension designed for
non-stationary environments.

Main contribution: In this paper, we introduce a new
robust SOBI variant tailored for overdetermined linear mix-
tures of temporally correlated wide-sense stationary (WSS)
sources corrupted by additive stationary heavy-tailed noise.
Specifically, the noise distribution is assumed to belong to the
broad class of compound Gaussian (CG) distributions [12],
which encompasses both heavy-tailed distributions (e.g., the
t-distribution) and light-tailed ones (e.g., Gaussian).

The proposed method, called measure-transformed (MT)-
SOBI operates by applying a transform to pairwise joint
probability measures of time-lagged samples. The considered
transform [9], [13]-[15] is generated by a non-negative data-
weighting function, called MT-function. Proper selection of
the MT-function can lead to suppression of zones in the
observation space attributed to outliers, leading to significantly
enhanced separation performance.

The MT-SOBI consists of two steps. First, a consistent
estimate of the projection matrix onto the null space of
the transposed mixing matrix is obtained through spectral
decomposition of an empirical MT zero-lagged autocorrelation
matrix. In the second step, this projection matrix is utilized
to construct a set of empirical MT-autocorrelation matrices
corresponding to distinct non-zero time-lags. A consistent
estimate of the non-square mixing matrix is then derived via
non-orthogonal approximate joint diagonalization (AJD) [16]
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of these matrices.

In this context, we note that the measure transformation
framework has been previously applied to BSS in [14]. How-
ever, unlike MT-SOBI, which leverages temporal correlations
at different time-lags within a single WSS segment, the method
in [14] is tailored for piecewise-stationary mixtures and ex-
ploits variance diversity across independent data segments.

The MT-SOBI offers several advantages over the aforemen-
tioned techniques. First, unlike SOBI and its robust variants,
MT-SOBI does not apply pre-whitening, thereby retaining
the original data structure. Furthermore, in contrast to the
sign-autocorrelation matrix used in SAM-SOBI and eSAM-
SOBI, the MT-autocorrelation matrix preserves the spatial
correlation structure even in the presence of additive noise,
which is essential for consistent mixing matrix estimation.
Moreover, when employing specific Gaussian MT-functions,
the empirical MT-autocorrelation matrix exhibits B-robustness,
with an influence function that decays to zero with the outlier
norm. Consequently, unlike SAM-SOBI and eSAM-SOBI, the
MT-SOBI effectively rejects large-norm outliers, leading to
more effective outlier suppression. These advantages translate
into significant performance improvements, as demonstrated
by simulations under both light-tailed Gaussian and heavy-
tailed non-Gaussian noise conditions.

II. PROBABILITY MEASURE TRANSFORM: REVIEW

In this section, we present an overview of some fundamental
principles of the probability measure transformation frame-
work [9], [13]-[15]. These principles will be subsequently
utilized to develop the proposed MT-SOBI algorithm.

A. Probability measure transform

Let x and y represent random vectors, with their respective
observation spaces denoted as X C RP and )V C RY. We
define the measure space (X X ), Sxxy, Pxy), Where Sxxy
is a o -algebra over the Cartesian product X’ x } and Py is
the joint probability measure defined on Sy .

Definition 1. Let v : RP x RY — R, represent a non-
negative function, such that the respective statistical expecta-
tion Elu(x,y); Pey] = Josy t(r,t) dPxy (r,) is finite and
strictly positive. A transform on the probability measure Pyy
is defined as:
Q:(gr) (A) £T, [Pxy] (A) = / Pu (r,t) dPxy (r,t), (1)
A
where A € Svxy and py, (r,t) = u(r,t)/E[u(x,y); Peyl-
The function u (-, -) is the generating function of the transform
and will be referred to as the MT-function.

Definition 1 implies that Q,(f;,) is a probability measure on
Sxxy that is absolutely continuous with respect to Pxy. The
corresponding Radon-Nikodym derivative [17] is given by:

Q) (r,t)/dPyey (r,1) £ @, (r.t). )

In practice, applying the transform to a probability distribution
Py, imposes weighting to the data samples drawn from

it. This weighting is controlled by the MT-function u(-,-),
which, when appropriately chosen, can effectively mitigate the
influence of noisy outliers.

B. The measure-transformed cross-correlation

Relation (2) implies that the cross-correlation matrix of x
and y under the transformed probability measure Q,(:;) takes
the form:

R 2 ElxyT; QW] = ElxyT o, (x,¥): Pyl 3)

The matrix Rg:;,) is referred to as the MT-cross-correlation
matrix. It represents a weighted cross-correlation under Py,
where the weighting function ¢, (-,-) is defined below (1).
Moreover, when the MT-function w(-,-) is non-zero and
constant valued, the transformed probability measure Qgﬁ
coincides with the origin measure Py, . In this case, the MT-
cross-correlation reduces to the conventional cross-correlation
matrix of two random vectors.

Given a sequence of K pairwise samples {(x,,yn)}5
generated from Pk, the empirical MT-cross-correlation matrix
is defined as:

R{y = Z L XnY 5 Pu(Xn, ¥n), )

where ¢y (r,t) 2 wu(r,t)/(K~* Y5 u(x,,yn)). The in-
finitesimal robustness of this estimator against outliers is eval-
uated using its influence function [8]. This function quantifies
the effect on the asymptotic bias caused by an infinitesimal
amount of contamination at some point in the joint observation
space, which represents an outlier. Similarly to the influence
function of the empirical MT-covariance [9], it can be shown
that the influence function associated with the empirical MT-
cross-correlation matrix (4) takes the form:

u(r, ) (rt” — RYY)

Elu(x,y); Pyl
where the pair (r,t) € X x ) represents an outlying point
in the joint observation space. An estimator is considered
B-robust if its influence function is bounded [8]. For the

MT-cross-correlation estimator, it follows from (5) that this
property holds if the MT-function w(-,-) satisfies

u(r,t) < C and u(r,t)(|r]* +[|t]*) < C, (6)

IF(r,t) =

(&)

where C' is a positive constant. Additionally, an estimator
is said to reject large-norm outliers if its influence function
decays to zero as the outlier norm approaches infinity. Based
on (5), this property holds if the MT-function u(-, -) satisfies
(e, ) ([l + [[#%) = 0 as x| + [[¢]]* = c0. (D)

III. PROBLEM FORMULATION

Consider an observation sequence that conforms to a noisy
linear mixing model:

X, =As, +wy,, n=1,... N, ®)

where {x,, € RP} is an observation process and n denotes
a discrete time instance. The processes {s, € R%,¢q < p}
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and {w,, € RP} represent latent source and noise processes

respectively. The matrix A € RP*? is an unknown full-column

rank mixing matrix. We assume that the source and noise
processes satisfy the following conditions:

(A-1) The source process {s,} is identically distributed, with
symmetric distribution about the origin and a non-
singular covariance matrix at each time instance n.

(A-2) The source process {s,, } is WSS. The respective spatial
autocorrelation matrix Rg(m) £ E[sn8],,.; Ps,s,,.]
is diagonal for any time-lag m.

(A-3) The noise process {w, } is independent and identically
distributed (i.i.d.).

(A-4) The noise process {w,} obeys a CG distribution [12]
at each time instance, with stochastic representation:

where v is a non-negative random variable and ¥ € R?
is a zero-mean Gaussian random vector, independent of
v, with scaled-identity covariance matrix o2 I,.

(A-5) {sn} and {w,} are statistically independent.

Given the data samples in (8), our goal is to estimate the
mixing matrix A and recover the source signals. Once an
estimate A of the mixing matrix is obtained, the sources can
be recovered by computing the separation matrix B = Af,
where AT 2 (ATA)"'AT is the Moore-Penrose pseudo
inverse [18] of A. The recovered sources are then given by
{8, =Bx, =s,+Bw,, n=1,...,N}.

IV. BLIND IDENTIFICATION

In this section, we introduce a two-step procedure for
blind identification of the non-square mixing matrix A, up to
the inherent ambiguities of scaling and column permutations.
This procedure forms the basis for the proposed MT-BSS
algorithm outlined in the next section. The initial phase of
this identification procedure extracts the projection matrix onto
the null space of A” from a zero-lagged MT-autocorrelation
matrix. The subsequent step leverages this projection matrix to
derive a set of MT-autocorrelation matrices at different time-
lags, from which A can be identified via joint diagonalization.

A. Stage I: Extraction of the projection matrix onto null(A™)

First, we note that the observation process {x;,} introduced
in (8) is identically distributed. Hence, it follows from (3) that
the zero-lagged MT-autocorrelation matrix R (0) & Rg:i)xn
(which is the MT-cross-correlation of x,, and itself) must be
time-invariant. Next, we consider the following MT-function:

u(r,t) = h(x])) x A((It]), (10)

where h : R — R is a non-negative zero-centered symmetric
function. Under Assumptions (A-1) and (A-3)-(A-5), it follows
from [15, Th. 2] that the respective time-invariant zero-lagged

MT-autocorrelation matrix takes the form:
R™(0) = AB,AT +¢,1,, (11)

where B, € R7%7 is a positive-definite matrix and ¢, is a
positive scalar. Since A is assumed to have a full column

rank, this structure facilitates the determination of the null
space of A7 through eigen-decomposition of R (0). The
null space is spanned by the p — q eigenvectors corresponding
to the smallest p — ¢ eigenvalues. Let V,, € RP*(P—9) denote
the matrix comprised of these vectors. Then, the projection
matrix onto null(AT) is obtained by:

Py =V, V] (12)

B. Stage II: Identification of A via joint diagonalization
In the second step, we consider an MT-function of the form:

v(r,t) £ g(Par) x g(Pyt), (13)

where g : RP — R is a symmetric, zero-centered, and non-
negative function. Using (13), we derive the corresponding
MT-autocorrelation matrix of the observation process {x,}
(8) at an arbitrary time-lag m. This matrix is obtained from
the MT-cross-correlation (3) by substituting x and y with
X, and X,.,, respectively. By (8) and (13), it follows that
V(Xpns Xntm) = g(PErw,) X g(PEwW, 1 m), implying that the
projection matrix nullifies the dependency of the MT-function
on the source vectors. Leveraging this key property along with
Assumptions (A-1)-(A-3) and (A-5), we conclude that the MT-
autocorrelation matrix is time-invariant and takes the form:

R (m) £ R = ARgs(m)AT+RM (0)6(m), (14)

Xn Xntm
where Rg(m) is the autocorrelation of the source process, de-
fined in (A-2), RE;;)(O) is the zero-lagged MT-autocorrelation
of the noise process, and §(-) denotes Kronecker’s delta.

The result in (14) implies that for any set M of non-zero
time-lags, the corresponding MT-autocorrelation matrices are
noise independent satisfying:

{RY)(m) = ARs(m)AT}

where {Rg(m)}, .1, are diagonal by assumption (A-2).
Building on this outcome, the following proposition provides
conditions under which the mixing matrix A can be recovered
via joint diagonalization of {R{" (M)} e

5)

Proposition 1 (Identification of the mixing matrix). Let M

denote a set of distinct non-zero time-lags. Assume that the

matrices {Rs(m)},,cr satisfy the following conditions:

(B-1) Define r; , as the i-th diagonal entry of Rg(m). For
each pair of distinct diagonal entries (i, j), there exists
a pair of time-lag indices, (m,n), such that the vectors
[Pisms i)l and [1jm,7;0]" are neither collinear nor
equal to zero. This condition necessitates at least two
distinct time-lags, i.e., M = |M| > 2.

(B-2) There exists a time-lag m™ € M, such that the matrix
Rs(m*) is non-singular.

Under these conditions, the non-square full-column-rank mix-

ing matrix A can be uniquely determined, up to scaling and

column permutations, from the set of equations in (15).

The proof follows a similar approach to that of [14, Prop.
1]. However, it is noteworthy that in this formulation, the min-
imum required number M of jointly diagonalizable matrices
is 2, whereas in [14, Prop. 1], it is 3.
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V. THE MT-SOBI ALGORITHM

The MT-SOBI algorithm is derived by substituting the
MT-autocorrelation matrices R,(cu)(O) and {Rg(v)(m)}me Mo
employed in the two-step identification procedure outlined in
Section IV, with their empirical estimates. At each stage, a
scaled outlier-suppressive MT-function is chosen.

A. Stage I: Estimation of the projection matrix onto null(A™)

At the initial phase, an empirical estimate of the projection
matrix Px (12) is obtained as:

Pt 2V, V], (16)
where V,, € RP*(P=9) consists of the eigenvectors of the
empirical zero-lagged MT-autocorrelation matrix Rﬁ(“)(o) as-
sociated with its p — ¢ smallest eigenvalues. The matrix
R (0) is derived from (4) by substituting K with the actual
sample size N and replacing y,, with x,, (8).

The MT-function (10) is specified within a parametric
family consisting of pairwise products of scaled functions:

{u(r, :0) £ h(O e x O el) : 0 € Ry}, (17)

such that the robustness conditions (6) and (7) are satisfied. In
this setting, we note that choosing a Gaussian shaped function,
specifically h(r) = exp(—r?), meets these conditions. The
parameter 6 is a strictly positive scaling factor that governs
the suppression level of outliers. Here, 6 is determined as a
measure of nominal data dispersion:

_ p ~
0=3xp 121_:10“

where ¢; £ k x MAD({z;.,}_,), k = 1/erf *(3/4), is a
robust median absolute deviation (MAD) estimate of standard
deviation [7] and x; ,, is the ¢-th coordinate of the observation
vector X,.

(18)

B. Stage II: Estimation of A via non-orthogonal AJD

In the second stage, the empirical projection matrix Pg“”

(16) is plugged into the MT-function v(-, -) (13). Subsequently,
based on Proposition 1, the non-square mixing matrix A is es-
timated by applying non-orthogonal AJD to the corresponding
set of symmetrized empirical MT-autocorrelation matrices
{ROm 2 5 (RO ) + ROT() | (19)
meM

Following the definition of the MT-autocorrelation matrix in
(14), R\ () is derived from (4) by replacing K with N —m
and substituting y,, with X,,4,,. The averaging in (19) ensures
symmetry in the empirical MT-autocorrelation matrices arising
from (15). A viable choice for an AJD algorithm, suited for the
given setting involving non-square mixing and non-positive-
definite matrices, is the ACDC procedure described in [16].

Similarly to the previous stage, the MT-function (13) is
specified within a parametric family comprising pairwise prod-
ucts of scaled functions:

{o(r,t;0) £ g(67"Pyr) x g(07'Pyt): 0 €Ryy}, (20)

such that the robustness conditions (6) and (7) are satisfied.
Analogously to the proof of [13, Prop. 7], it can be shown that
under the choice of a Gaussian shaped function, specifically
g(r) = exp(—||r||?), these conditions hold over a sufficiently
large subspace of R” x RP whose probability measure is ~ 1.
Also here, the parameter 6 is a strictly positive scaling factor
controlling the shrinkage level of outliers. This parameter is
chosen using the same selection rule outlined in (18).

VI. NUMERICAL EXAMPLES

In this section, we assess the performance of the proposed
MT-SOBI in comparison to the non-robust SOBI [2] and the
following robust alternatives: SAM-SOBI [3], eSAM-SOBI
[4], and MF-SOBI [10]. To quantify estimation accuracy, we
evaluate the deviation of ATA from the identity matrix using
Amari’s error [19, Sec. 5].

A. Experimental settings

Throughout this experiment, the dimensions of the obser-
vation and source processes were set to p = 10 and ¢ = 5,
respectively. The sample size was fixed at N = 1000. The
estimation accuracy was assessed over J = 103 independent
Monte-Carlo trials. In each trial, the entries of the mixing
matrix A were drawn independently from a standard normal
distribution, and each column was subsequently normalized to
have unit Euclidean norm. Each source component sequence
{sin}N 4, i € {1,...,q}, was modeled as a second-order
autoregressive process, generated independently by passing a
unit variance white Gaussian noise through the transfer func-
tion A(z) = (1 —az™ 1) (1 —a*z71))~L. The pole a = pe’?®
had magnitude p and phase ¢, drawn independently from
uniform distributions over the open intervals (0.98,0.99) and
(0.17,0.97), respectively. We examined two types of the CG
noise distributions: 1) light-tailed Gaussian distribution, and
2) heavy-tailed ¢-distribution with 3 degrees of freedom. The
corresponding scatter parameter ai, defined below (9), was
chosen to maintain a fixed generalized signal-to-noise ratio
(GSNR), defined here as GSNR £ tr[ARg(0)AT]/(po?).

B. Implementation details

Throughout the study, the set of time-lags corresponding to
the autocorrelation matrices was set to M = {1,2,...,30}
across all compared methods.

In the MT-SOBI algorithm, the functions h(-) and g(-) shap-
ing the parametric MT-functions u(-,-;6) (17) and v(-,-;0)
(20) were set to h(r) = exp(—r2) and g(r) = exp(—|r|?).
respectively. As discussed below (17) and (20), these choices
yield strongly outlier-suppressive MT-functions that satisfy
conditions (6) and (7). The scaling parameter # was chosen ac-
cording to (18). The approximate joint diagonalization (AJD)
of the symmetrized empirical MT-autocorrelation matrices
(19) was performed using the ACDC method [16].

The MF-SOBI [10] algorithm was implemented with a
10-sample-wide median filtering applied to each component
sequence {z;,}N_, fori=1,...,p, separately.
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C. Results

Figs. 1 and 2 depict the averaged Amari error as a function
of GSNR for the Gaussian and ¢-distributed noise, respectively.
Notably, MF-SOBI exhibits the weakest performance due
to the non-linear median filtering, which distorts the linear
mixing structure (8). In contrast, MT-SOBI achieves the best
performance in both noise scenarios.

In the Gaussian noise case, the performance advantage of
MT-SOBI over SOBI, SAM-SOBI, and eSAM-SOBI may be
attributed to the fact that, unlike these methods, which apply
pre-whitening and propagate estimation errors through the
entire separation process, MT-SOBI avoids this step, thereby
preserving the original data structure. Although estimation
errors in the projection matrix may still propagate, they remain
localized within the scalar data-weighting MT-function rather
than affecting the full data transformation. Furthermore, the
performance advantage over SAM-SOBI and eSAM-SOBI
may be attributed to the property that the MT-autocorrelation
matrices preserve the spatial correlation structure under the
additive noise model, as evidenced by (15). This property is
necessary to ensure consistent estimation of A through AJD.

For the heavy-tailed ¢-distributed noise, the performance
advantage of MT-SOBI over the non-robust SOBI is an-
ticipated. The advantage over SAM-SOBI and eSAM-SOBI
may stem from three factors: (i) avoidance of pre-whitening,
(ii) spatial correlation structure preservation in the presence
of additive noise, and (iii) more effective outlier suppression.
The latter arises from the fact that unlike the empirical sign-
autocorrelation matrices used in SAM-SOBI and eSAM-SOBI,
the empirical MT-autocorrelation matrices reject large-norm
outliers under the considered MT-functions.

Amari error

=== VIT-SOBI

SOBI

SAM-SOBI
eSAM-SOBI

MF-SOBI

-5 0 5
GSNR [dB]

Fig. 1. Gaussian noise: Averaged Amari error versus GSNR.

VII. CONCLUSION

In this paper, we introduced a new robust variant of the
SOBI algorithm. The proposed method, called MT-SOBI,
operates by transforming pairwise joint probability measures
of time-lagged samples. We showed that this framework yields
superior performance compared to other robust SOBI exten-
sions. Future research will explore refined scaling of the MT-
functions to optimize performance-related objectives. Addi-
tionally, a recursive version of this method will be investigated.
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Fig. 2. t-distributed noise: Averaged Amari error versus GSNR.
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