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Abstract—The problem of optimal reconstruction of a low-
rank matrix subject to additive noise of arbitrary noise color is
addressed. We propose a non-iterative method based on modeling
the nullspace of the data. The proposed technique is shown to
yield statistically efficient estimates at sufficiently high Signal-
to-Noise Ratio. Yet, the computational complexity is significantly
reduced compared to existing methods. The empirical efficiency
is verified using simulated data. In more difficult scenarios, the
proposed NullSpace Estimator (NSE) can be used to initialize an
iterative approach, and in the studied cases just one iteration of
Alternating Least-Squares (ALS) was found enough.

I. INTRODUCTION

To approximate a given matrix with one of lower rank is
a problem that has been studied for almost a century. The
classical Eckart-Young theorem solves the problem in the
Frobenius norm sense using the Singular Value Decomposition
(SVD). Reduced-rank approximation and the related problem
reduced-rank linear regression [1], [2] is of great importance
in a diverse set of applications in different disciplines, such as
Chemometrics, Econometrics and Microbiology. Engineering
applications include 2D filter design [3], image compression
and de-noising [4], and localization from pairwise distance
measurements [5]. In many of these applications, it is relevant
to apply a weighting to the different matrix elements. The
weighted low-rank approximation problem has been shown
to be NP-complete [6]. Yet, several practical algorithms have
been proposed, such as [7]–[9].

The present contribution considers a more general case,
where the measured matrix is subject to an additive noise of
an arbitrary color. This problem was studied in [10] and [11],
and both of these contributions involve the idea to search for
the nullspace of the low-rank matrix rather than the matrix
itself (image space). We leverage on this idea by proposing
a non-iterative solution to the low-rank matrix approximation
problem for a general noise color. The proposed NullSpace
Estimator (NSE) requires only the solution of a weighted linear
least-squares problem. We derive the optimal weighting matrix
and show that the so-obtained method attains the Cramér-Rao
lower Bound (CRB) for the problem at hand, and thus has the
same performance as the previously known iterative methods.
A more precise relation to [10], [11] is given in Section V.

II. REDUCED RANK MODELING

In many situations of practical interest, the information-
bearing part of a data matrix can be assumed to be of
low rank. Assuming additive noise, the observed data matrix
Y ∈ RM×N , where M ≥ N , is modeled as

Y = X+E , (1)

where X has rank r, r < N . Defining e = vec(E), we assume

E[e] = 0 , E[eeT ] = C ,

where C is known. For most of the analysis, e can have
an arbitrary distribution, but for the Maximum Likelihood
(ML) estimator and the Cramér-Rao lower Bound (CRB), we
assume that e ∈ N (0,C). For later reference, we introduce
the Cholesky factorization of the positive definite matrix C
and its inverse as

C = C1/2CT/2 , C−1 = C−T/2C−1/2 . (2)

The goal is to recover the low-rank matrix X, given data Y and
knowledge of C. The rank r can be estimated from data in case
it is not known [1], but we assume here that r is known. If the
noise is white, the optimal solution (in a Maximum-Likelihood
sense) to the matrix approximation problem is obtained by
truncating the SVD, according to the classical Eckart-Young
theorem

min
X

∥Y −X∥2F s. t. rank(X) = r

⇒

X̂ =
r∑

k=1

ukskv
T
k .

(3)

Here, Y =
∑N

k=1 ukskv
T
k = USVT is the SVD of Y, and

the singular values sk are ordered in a non-increasing fashion.
The case of main interest here is where C has no particular
structure to exploit. For the statistical analysis, we will assume
that the noise is ”small”, i.e. C = σ2C0, where C0 is fixed
and σ2 is sufficiently small.

III. NON-LINEAR LEAST-SQUARES ESTIMATION

Since X is assumed to be deterministic, the ML principle
provides the optimal estimate in the sense that the estimation
error achieves the CRB in the small error regime (e.g. [12]).
Let y = vec(Y) = x + e, where e ∈ N (0,C), so that y ∈
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N (x,C). As is well-known, the ML estimate for this case
is obtained by solving the Non-Linear Least-Squares (NLLS)
problem

x̂ = argmin
x

∥y − x∥2C−1 subject to rank(X) = r .

In general, this is difficult to solve due to the constraint
rank(X) = r. But for C = σ2I, we have

∥y − x∥2C−1 =
1

σ2
∥Y − X∥2F ,

which verifies that the ML estimator for white noise is given
by the truncated SVD.

A. Parameterization

The set of matrices satisfying the constraint rank(X) = r
is not convex. We can avoid the problem by realizing that if
X has rank r, it can be factorized as

X = LR , (4)

where L ∈ RM×r and R ∈ Rr×N . Clearly, this factorization
is not unique, but provided the first r columns of R are linearly
independent, we can obtain a unique factorization by choosing

R = [Ir,R2] and L arbitrary , (5)

where Ir is the r × r identity matrix and R2 ∈ Rr×(N−r).
The total number of unique parameters in L and R2 is thus
(M +N − r)r.

Remark 1 While the parameterization (5) is not always
possible, it can be ”enforced” by a pre-conditioning of Y (and
hence X) using the orthogonal matrix V (N × N ) of right
singular vectors of Y. Since the columns of YV are orthogonal,
we expect the first r columns of XV to be linearly independent
so that the parameterization (5) exists. Thus, Y can be replaced
by YV = YV when applying the estimator, and the so-obtained
RV is replaced by R = RV VT to ”undo” the transformation.
Note that the noise color needs to be modified due to the
transformation. The pre-conditioning is generally applicable
and it guarantees that (5) exists for small enough σ2. □

B. Separable NLLS Formulation

Given a unique parameterization, we write x(θ) =
vec(X(θ)), where θ is the parameter vector

θ =

[
vec(L)
vec(R2)

]
=

[
ℓ
r2

]
. (6)

Using the well-known formula

vec(ABC) = (CT ⊗ A)vec(B) ,

where ⊗ is the Kronecker product, we have

x(θ) = vec(X(θ)) = vec(LR) = (RT ⊗I)vec(L) = (RT ⊗I)ℓ

and therefore the ML/NLLS estimate is the minimizing argu-
ment of the criterion function

VML(θ) = (y − (RT ⊗ I)ℓ)T C−1(y − (RT ⊗ I)ℓ) . (7)

For fixed R, VML(θ) is a quadratic function of ℓ, implying that
this is a separable NLLS problem, see e.g. [12]. The weighted
LS solution w.r.t. ℓ is given by

ℓ̂(R) =
{
(R ⊗ I)C−1(RT ⊗ I)

}−1
(R ⊗ I)C−1y . (8)

Similarly, one could fix L and solve for R. The procedure
that solves for one parameter vector at the time in an iterative
fashion is termed Alternating Least Squares (ALS), and it
does not really require a unique parameterization as in (5).
An alternative is to substitute (8) back into (7), which results
in a minimization over r2 only:

Vsep(r2) =
∥∥∥P⊥

C−1/2
(RT⊗I)C

−1/2y
∥∥∥2 . (9)

Here, we have used the Cholesky factorization of C−1 in-
troduced in (2) and PA = A(AT A)−1AT is an orthogonal
projection onto the span of A, whereas P⊥

A = I−PA projects
onto its orthogonal complement. Minimizing (9) requires a
non-linear search over the parameter r2, which can be done
using e.g. a Newton-type method [10], [11]. This can be
successful if a sufficiently good initial estimate is available.

C. The Cramér-Rao lower Bound

The Cramér-Rao lower Bound (CRB) is the inverse of the
Fisher Information Matrix (FIM). For our case it is given by
(see e.g. [12])

FIMθ =
∂xT (θ)
∂θ

C−1 ∂x(θ)
∂θT

, (10)

and the CRB inequality is

E[(θ̂ − θ)(θ̂ − θ)T ] ≥ FIM−1

θ , (11)

where θ̂ is any unbiased estimate of θ. With the parameteri-
zation (5), the Jacobian is obtained as

∂x(θ)
∂θT

=
[
RT ⊗ I ĨT ⊗ L

]
△
= B , (12)

where
Ĩ =

[
0(N−r)×r I(N−r)

]
.

It is well-known that the ML/NLLS estimator asymptotically
achieves (11) with equality as σ2 → 0.

IV. THE NULLSPACE ESTIMATOR

The idea of the proposed NullSpace Estimator (NSE) is
to parameterize the nullspace of X rather than the matrix
itself. Since X has rank r, there exists a full-rank matrix
N ∈ RN×(N−r) such that XN = 0. Clearly, N is not unique,
but provided its N − r last rows are linearly independent we
can uniquely parameterize N as

N =

[
N1

IN−r

]
, (13)

where N1 ∈ Rr×(N−r). The benefit of this parameterization
is that it only requires one unknown matrix N, in contrast with
modeling X itself as in (4), which is a bi-linear model.
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Note that (13) is related to (5), since XN = 0 implies
RN = 0, i.e.

[Ir,R2]

[
N1

IN−r

]
= 0 ⇒ N1 = −R2 . (14)

From Remark 1, we note that Y can be pre-conditioned to
make (13) possible if needed.

With the parameterization (13), the NSE is formulated as

N̂1 = argmin
N1

∥∥∥∥vec([Y1 Y2]

[
N1

IN−r

])∥∥∥∥2
W

(15)

where Y1 ∈ RM×r, Y2 ∈ RM×(N−r) and W ∈
RM(N−r)×M(N−r) is a positive definite weighting matrix as
yet to be defined. In the unweighted case, W = I, we get the
standard pseudo-inverse solution

N̂1 = −(YT
1 Y1)

−1YT
1 Y2 = −Y+

1 Y2 . (16)

This can be used as an initial estimate, since, as we shall see,
the optimal weighting depends on the unknown N1. Note that
(16) is a consistent estimator in the sense that gives a correct
basis for the nullspace in the noiseless case.

For a general weighting, we vectorize the matrices as yk =
vec(Yk), k = 1, 2 and η = vec(N1). Applying the Kronecker
product formula again, the criterion (15) is expressed as

η̂ = argmin
η

∥(IN−r ⊗Y1)η + y2∥2W . (17)

Defining the Cholesky factorization of the weighting matrix
as W = W1/2WT/2, the solution is obtained as

η̂ = −
{
WT/2(IN−r ⊗Y1)

}+

WT/2y2 . (18)

Re-arranging the vector η̂ into the matrix N̂1, we now have an
estimate of the nullspace matrix N from (13). In addition, we
can estimate R using (5) with R̂2 = −N̂1. Inserting this into
(8) gives L̂, which finally yields the reconstructed low-rank
matrix X̂ = L̂R̂.

A. Performance Analysis and Choice of Weighting Matrix

First, note that as σ2 → 0, we have

η̂ → −
{
WT/2(IN−r ⊗X1)

}+

WT/2X2 = η0 , (19)

where η0 denotes the true value. Thus, for small σ2, we can
perform a first-order analysis of the estimation error, ∆η =
η̂−η0. Let Y = X+E and partition X = [X1 X2] and E =
[E1 E2] in the same way as Y. Note that X1 = LR1 = L,
since R1 = I. The estimate using noisy data is then expressed
as

η̂ =−
{
(I⊗ [L+E1])

TW(I⊗ [L+E1])
}−1

× (I⊗ [L+E1])
TW(x2 + e2) . (20)

Using that x2 = −(I ⊗ X1)η = −(I ⊗ L)η and keeping
only first-order terms we arrive at

∆η ≃−
{
(I⊗ LT )W(I⊗ L)

}−1
(I⊗ LT )W

× {(I⊗E1)η + e2} , (21)

where the notation ≃ means that terms that tend to zero faster
than ∆η in probability as σ2 → 0 have been neglected. Rear-
ranging the rightmost Kronecker product, the above becomes

∆η ≃ −H−1(I⊗ LT )W
[
NT

1 ⊗ IM IM(N−r)

]
e , (22)

where we introduced the matrix

H = (I⊗ LT )W(I⊗ L) . (23)

Next, note that
[
NT

1 ⊗ IM IM(N−r)

]
= NT ⊗ IM , so

∆η ≃ −H−1(I⊗ LT )W(NT ⊗ IM ) e . (24)

Hence, we see that if ∥e∥2 is ”small”, the estimation error ∆η
has zero mean and covariance matrix

E[∆η∆ηT ] = H−1(I⊗ LT )W(NT ⊗ IM )

×C(N⊗ IM )W(I⊗ L)H−1 . (25)

Using standard arguments in weighted Least-Squares we can
now show that

E[∆η∆ηT ] ≥ H−1 , (26)

with equality if the weighting matrix is chosen in an optimal
way as

Wopt =
{
(NT ⊗ IM )C(N⊗ IM )

}−1
. (27)

The optimal weighting matrix depends on the unknown matrix
N1, but replacing W by any consistent estimate Ŵ, for ex-
ample using (16), will not alter the first-order approximation.

Hence, we have proved the following key result:
Theorem 1: Let the estimate η̂ be obtained from (17), and

assume that σ2 ≪ 1. Let the weighting matrix be chosen as
(27). Then, to first order in σ2, the estimation error ∆η is zero
mean with covariance matrix

E[∆η∆ηT ] =
{
(I⊗ LT )Wopt(I⊗ L)

}−1
. (28)

B. Asymptotic Optimality

The proposed NSE is non-iterative and requires only the
solution of linear equations. Next, we show that this does
not imply a performance degradation asymptotically. Notice
first that the parameter vector r2 in (6) is identical to −η.
Therefore, it is possible to directly compare the covariance
matrix of η̂ with the CRB for r2.

Theorem 2: The asymptotic covariance matrix of η̂ as
given by (28), is identical to the CRB for the corresponding
parameter r2, obtained from (10)–(12). Thus, the optimally
weighted null-space estimator is statistically efficient for high
SNR.

Proof: See the appendix.

C. Computational Cost

Being non-iterative, the proposed NSE is a computationally
attractive alternative to the ALS or Newton-type techniques.
The computational cost for reconstructing X is dominated
by solving (8). This can be done by computing the QR-
factorization of the matrix (R ⊗ IM )C−T/2, which requires
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O(M3Nr2) flops, not taking the structure of the matrices into
account.

For the white noise case, the proposed NSE is in fact a
competitive alternative to the SVD. It is easy to verify that the
optimally weighted NSE reduces to the unweighted solution
(16) when C = σ2I. Thus, a basis for the nullspace of X is
obtained using only O((M +N − r)r2) flops, as opposed to
the SVD, which requires O(MN2) flops. We note that there
are other alternatives to the SVD for the white noise case, such
as the approach of [13], which is based on parallel subspace
computation of submatrices of smaller size.

V. RELATION TO PREVIOUS WORK

The proposed NSE estimator is close in spirit to work
published in [10], [11]. Therein, the authors exploit a re-
parameterization of the ML/NLLS criterion (9) in terms of
the nullspace matrix N as follows: XN = 0 means that
RN = 0, which implies that the matrix CT/2(N⊗I) spans the
orthogonal complement of span{C−1/2(RT ⊗I), appearing in
(9). This means that the projections onto these spaces coincide:

P⊥
C−1/2(RT⊗I) = PCT/2(N⊗I) . (29)

Therefore, the concentrated criterion (9) can be expressed as

Vsep(N) =
∥∥∥PCT/2(N⊗I)C

−1/2y
∥∥∥2

= yT (N ⊗ I)Wopt(NT ⊗ I)y , (30)

which we recognize as the NSE criterion (15). The differences
to the proposed approach are twofold. In the referenced work,
Wopt = W(N) is a non-linear function of N. In contrast, we
show that any choice of W > 0 yields consistent estimates of
N. Such an estimate can be used to calculate a fixed Ŵopt,
which in turn gives an asymptotically optimal estimate of
N. The second difference lies in the parameterization of N.
In [11], N is filled with parameters, resulting in an over-
parameterized (singular) optimization problem. In [10], N is
instead constrained to be an orthogonal matrix, resulting in
an optimization over the Grassman manifold. In contrast, we
propose to use a linear parameterization that allows a compu-
tationally efficient solution by linear least-squares. Finally, we
remark that the idea to fix the normalizing ”middle matrix”
in the projection matrix has been used before in a different
context, see e.g. [14], [15].

VI. NUMERICAL EXAMPLES

In this section, we present results from computer simulations
using randomly generated low-rank matrices and noise.

Example 1 Missing data
In the first example, we consider the case where some data
entries are missing and the measurement noise is white. The
missing data is modeled by adding a large number to the
diagonal of C at locations corresponding to the missing entries.
The data dimensions are M = 40, N = 20, r = 4, the noise is
e ∈ N (0, σ2I), and 10% data at random locations are missing.
The low-rank matrix X is generated from (4), where the entries

of L and R are i.i.d. N (0, 1). Figure 1 shows the total MSE
of the reconstructed X̂ versus the SNR, defined as

SNR =
E[|xi,j |2]

σ2
.

The following methods are compared: SVD, the proposed
NSE, NSE-V, ALS with random initialization and ALS ini-
tialized by NSE-V. Here, NSE-V refers to the NSE applied to
transformed data according to Remark 1. Only one iteration
of ALS is applied, and the MSE:s as well as the CRB are all
averaged over 1000 Monte-Carlo trials.

Fig. 1. Total MSE of X̂ vs SNR in dB. Missing data scenario.

As seen in the plot, the ALS with random initialization
performs the worst (more iterations are needed), and NSE
without pre-conditioning suffers in the high SNR region due
to some realizations of X where the parameterization (5) is
nearly invalid. Applying the transformation (NSE-V) leads to
performance close to the CRB, and applying one iteration of
ALS can only make a minor improvement, except at very high
SNR, where also NSE-V suffers somewhat.

Example 2 Clutter-like Noise
In the second example, the noise has a strong (20 dB above
noise floor) low-rank component, like a radar clutter, plus
white ”receiver noise”:

C = σ2 (Cc + I)

where Cc is a randomly generated rank-2 matrix with
Tr(Cc)/(MN) = 20 dB.

The rest of the parameters are as in Example 1, and the same
methods are compared in Figure 2. In this plot we omitted the
5% smallest and 5% largest values when computing the MSE
to reduce the influence of outliers (affected mainly NSE).

Figure 2 shows a similar general behavior as Figure 1, but
in this more stressful scenario the performance differences are
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Fig. 2. Total MSE of X̂ vs SNR in dB. Clutter-like noise scenario.

more notable. Again, NSE-V achieves the CRB for high SNR,
whereas one iteration of ALS initialized by NSE-V suffices to
yield efficient estimates also for low SNR.

VII. CONCLUSIONS

We have proposed a non-iterative method for reconstructing
a low-rank matrix from data corrupted by additive noise of
arbitrary color. The proposed Null-Space Estimator (NSE) is
based on modeling the nullspace rather than the image space of
the data, and it is shown to yield statistically efficient estimates
in the high SNR regime. For more stressful scenarios, it can be
used to initialize an iterative method, like Alternating Least-
Squares or a Newton-type optimization. In the computer simu-
lations, just one iteration using ALS was found sufficient. The
proposed approach can potentially reduce the computational
complexity of low-rank matrix approximation substantially,
thus allowing larger problems to be solved. Possibilities for
future work include statistical analysis for large M (as opposed
to high SNR), subspace tracking as M is incremented, and
extension to tensor-valued data.

APPENDIX

Express the FIM using (10) and (12) as the 2 × 2 block
matrix

BTC−1B =

[
R⊗ I

Ĩ⊗ LT

]
C−1

[
RT ⊗ I ĨT ⊗ L

]
(31)

=

[
J11 J12

J21 J22

]
, (32)

where the blocks are given by

J11 =(R⊗ I)C−1(RT ⊗ I) (33)

J12 =(R⊗ I)C−1(ĨT ⊗ L) (34)

J21 =(Ĩ⊗ LT )C−1(RT ⊗ I) (35)

J22 =(Ĩ⊗ LT )C−1(ĨT ⊗ L) . (36)

The block matrix inversion lemma now shows that[
J11 J12

J21 J22

]−1

=

[
X X

X
(
J22 − J21J

−1
11 J12

)−1

]
, (37)

where X denotes blocks that are not of current interest and
the lower right block is the CRB for r2. We get

J =J22 − J21J
−1
11 J12 = · · ·

=(Ĩ⊗ LT )C−T/2 P⊥
C−1/2(RT⊗I) C

−1/2(ĨT ⊗ L) , (38)

where P⊥
C−1/2(RT⊗I)

was introduced in (9). Next, we apply
the re-parameterization (29), which inserted into (38) yields

J = (Ĩ⊗ LT )(N⊗ I)Wopt(N
T ⊗ I)(ĨT ⊗ L) . (39)

The last step is to observe that ĨN = [0 I][N1 I]T = I, so
that (Ĩ⊗ LT )(N⊗ I) = I⊗ LT , and therefore

J = J22 − J21J
−1
11 J12 = (I⊗ LT )Wopt(I⊗ L) , (40)

which is precisely the matrix appearing in (28).
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