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Abstract—In this work, we address the design of universal
sampling patterns, which ensure the recovery of sparse signals
from compressed sensing (CS) in a transform domain. Our
proposed sampling approach is a generalization of an arithmetic
sequence, namely folded arithmetic sequence (FAS) of difference
d. Considering the Discrete Sine Transform Type-I even (DST1e),
we rigorously characterize the differences d that guarantee
perfect sparse signal recovery from FAS sampling in the DST1e
domain. For such differences d, we prove that the corresponding
measurement matrix has maximum spark. Therefore, FAS is a
universal sampling scheme for DST1e. Moreover, this approach
constitutes the first universal sampling pattern for a Discrete
Sine Transform. Simulations illustrate the good behavior of CS
solvers when using FAS approach in the DST1e domain.

Index Terms—Compressed sensing, sparse signals, universal
sampling pattern, spark, DST.

I. INTRODUCTION

Discrete Trigonometric Transforms (DTTs) have become
an alternative to Discrete Fourier Transform (DFT) in some
signal processing applications. For instance, Discrete Cosine
Transforms (DCTs) are widely used for signal and image
compression [1], and constitute a good alternative in telecom-
munications, outperforming the DFT in some scenarios [2],
[3]. Regarding the Discrete Sine Transforms (DSTs), they are
also used in applications such as data compression, adaptive
digital filtering, image restoration/interpolation, and graph sig-
nal processing [4]-[7]. In particular, the Discrete Sine Trans-
form Type-I even (DST1e) presents important properties: First
of all, it outperforms the DCT approach in some scenarios,
since DST1e is close to the optimal Karhunen-Loeve transform
for first-order Markov stationary signals with low correlation
coefficients [1], [7]. Besides, DSTle can be implemented
by fast algorithms recently improved [7]. Moreover, DSTle
equals its inverse (up to a constant factor) [8], so its inverse
transform is straightforward.

In this paper, we address the problem of reconstruction of
sparse signals from a small number of measurements in their
DSTle transformed vector. From compressed sensing theory
[9]-[11], it is possible to recover s-sparse signals by means
of a set of p > 2s samples in a transform domain, whenever
the measurement matrix has maximum spark. In that case, the
corresponding sampling pattern is said to be universal.
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For a given transform matrix, proving that it presents
maximum spark is a very difficult mathematical issue [10]:
recall that a matrix with p rows has maximum spark [9] if
any set of p out of its columns are linearly independent. For
the DTTs, in [12] it was shown that all even-type DCTs
present maximum spark in its first rows. This result was
extended in [13], where a universal arithmetic sampling pattern
was designed for the Discrete Cosine Transform Type-I even
(DCTl1e). Unfortunately, that sampling scheme has not been
mathematically proven to be universal for the rest of DTTs.

To our knowledge, there are no results regarding the maxi-
mum spark for DSTs in the literature. For this reason, in this
work we investigate the design issue of universal sampling
schemes for the DSTle. First, we present a new sampling
pattern, the folded arithmetic sequence (FAS), based on an
arithmetic sequence of difference d, similar -but not equal- to
the one proposed in [13]. Then, we derive important neces-
sary and sufficient conditions on d that guarantee maximum
spark of the corresponding DSTle measurement submatrix.
In this way, we obtain universal FAS patterns for the DSTle
transform.

The paper is organized as follows: Section II presents the
proposed FAS sampling pattern. Section III provides the main
theoretical contributions of this work, say, the theorems that
prove the maximum spark of the proposed solution when using
the DST1e. Section IV illustrates some numerical simulations
of the performance of the proposed approach, and Section V
summarizes the main conclusions.

II. DESIGN OF THE FOLDED ARITHMETIC SEQUENCE

In this section we present our new sampling scheme from
the components of a vector. For simplicity, we will assume that
the vector length is (N — 1) and its components are indexed
aasm=1,...,N — 1.

Let us fix two integers 1 < d,p < N — 1, and consider the
set C = {dm, m = 1,...,p} of p numbers which form an
arithmetic sequence of difference d:

C ={d,2d,...,pd}. (1)

If pd < N, these indices correspond directly to p samples of
the original vector of length IV — 1. In this case, the approach
is well-known: it may be considered as the output of a sampler
that works at a fixed rate, as in [14].
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However, the condition pd < N is too strong: for high
values of the sampling difference d, a very small amount of
measurements p could be applied, and only sparse signals of
small order s = p/2 would be reconstructed.

To overcome this problem, we propose an extension of
this sampling scheme for pd > N, which is valid for any
amount of measurements p < (N — 1), and any difference d
of the arithmetic sequence, whenever d and N are coprime.
This condition on d guarantees that none of the numbers
d,2d, ...,pd equals a multiple of N, and this is necessary for
our procedure, as will be explained.

With this in mind, let us present our method: for any number
dm € C, there are two cases:

e If dm lies in an interval of the kind (2kN, (2k + 1)N)
for an integer k, then dm is replaced by the sample index

m =dm —2Nk, 1<m/<N-1. )

Note that this expression is also valid for the numbers

0 < dm < N (being k = 0), which remain unchanged.
o If dm lies in an interval of the kind ((2k — 1)N,2kN)

for an integer k, then we replace dm by the sample index

m' =2Nk—dm, 1<m'<N-1. 3)
In summary, it suffices to substitute the index dm by the
sample index m’ defined as

m' =|2Nk—dm|, 1<m'<N-1. 4)

Thus, Eq. (4) yields the general procedure for our novel
sampling pattern, which can be applied to any m =1...,p.

The following important result gives the condition that
guarantees that the obtained indices are all different, so this
way we get the desired number p of samples:

Proposition: If d and 2N are coprime, then the proposed
procedure yields exactly p different sampling indices.

Proof: Let us suppose that there exist two different numbers
dmy # dmy € C which provide the same index m’ in Eq.
(4). This happens if and only if

2Nk1 — dm1 =4+ (2Nk2 — dTTLQ)
<~ 2N(k1 F kQ) = d(m1 F mg)

for some integers k1, ko . But this is not possible since d and
2N are coprime, and 0 < |m; F ma| < 2p—1 < 2N. Hence,
the p indices obtained are all different. O

Summary: From the set C' of Eq (1), we build the set
I C{1,...,N — 1} which contains the new sampling indices
defined by Eq.(4). If d is coprime to 2N, then [ is the proposed
sampling pattern formed by p different indices. It is easy to
see that they result from folding the elements of the arithmetic
sequence C' with respect to NV or 0. For this reason, we will call
the proposed sampling scheme folded arithmetic sequence.

Remark 1: The proposed sampling pattern provides a set
of indices I which form arithmetic sequences of the same

15 16 20

Fig. 1. Example of the proposed folded arithmetic sequence for N = 16,
p =8 and d = 5, as explained in Section IL.A.

difference d . Thus, they can be considered as the output of a
set of asynchronous samplers, all of them with the same fixed
rate. In this sense, this approach is similar (but not equal) to the
ones summarized in [14] for the DFT, and the one presented
in [13] for the DCTle, as will be seen in the next example.

A. Example

For a 15-length signal, then N = 16, so we can choose
any difference d coprime with N, say, any odd number 1 <
d < 15. By taking d = 5, let us show how to design p = 8
samples with our FAS approach. The first eight multiples of
d are {5, 10,15, 20, 25,30, 35,40}. Let us apply our method:

1) First, We keep the samples in [1, N —1], say, {5, 10,15}.

2) Secondly, the numbers lying in the interval (N,2N) =
(16, 32) are {20, 25, 30}; following Eq. (3) each number
32 — k should be replaced by the index k, so the
respective new sample indices are {12,7,2}. (Notice
that they also form an arithmetic sequence of difference
—d = —5 whose next element would be —3).

3) Finally, the numbers lying in (2N,3N) = (32,48) are
simply replaced by their remainders modulo (2N = 32)
as in Eq. (2). Hence, the numbers {35,40} yield the
new sample indices {3,8} (with difference d = 5, as
expected).

Fig. 1 shows a diagram for this example: notice that
this procedure is equivalent to folding the numbers of the
arithmetic sequence on the right of [0,16] with respect to
N = 16 (marked with squares), continue to the left with the
arithmetic sequence of difference —d, and then folding the
resulting negative numbers with respect to 0 (marked with
triangles). Therefore, this is a folded arithmetic sequence.

Finally, we have obtained the sampling set
I=1{5,10,15} U{2,7,12} U {3,8}

which corresponds to three arithmetic sequences of the same
difference d = 5.

Remark 2: This FAS pattern is different from the one
proposed in [13] for DCTle: in that procedure, from a L-
length vector with components indexed as 1 < m < L, the
first component is always chosen (indexed as m = 1), whereas
our FAS scheme starts from m = d. Besides, in that approach,
N = L—1 instead of N = L+1. Finally, the example given in
[13] with the same setting (vector length 15, difference d = 5
and p = 8 samples), yielded the sampling pattern indexed as
{1,6,11} U {4,9,14} U {3, 8}, which is obviously different
from our FAS proposed pattern I. Therefore, although the
method given in [13] may be considered a folded arithmetic
sequence, it is clear that it provides a solution different from
our proposed FAS scheme.
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III. PERFECT RECOVERY FROM THE DST1E DOMAIN

Once the FAS sampling scheme has been introduced, we
now analyze its validity for perfect sparse reconstruction in
the DSTle domain, Recall that the DST1le matrix of order
N — 1, Sy, is defined in [8] as

[Stely,, = sin (kj’:;r) 1<kn<N-1.

We must study the spark of submatrices of S;. built by p rows
indexed as multiples of an integer 1 < d < N say, k = dm,
m =1,...,p. Let A denote the matrix whose entries are

d
am,n:sin(ﬂﬁn) m=1,.,p,n=1,...,N—1. (5)

Notice that, if A is a submatrix of S;., then necessarily none
of the numbers {d, 2d,...,pd} is a multiple of N. In effect,
if there exists any 1 < m < p such that md = NL for an
integer L, then the row of index dm would be null, since

d
sin (Fn;[ n) = sin (rLn) = 0.

But this row would not correspond to any row of the DSTle
matrix, because Si. is invertible.

Remark 3: We have just shown that a matrix A of the
form provided in Eq.(5) is a submatrix of S;. only if the set
C ={d,2d,...,pd} does not contain multiples of N. From
now on, we will assume this condition.

Remark 4: Luckily, for the definition of the matrix A it is
not necessary to assume dp < N either: in case dm > N, we
can use the expressions given in Section II, since Remark 3
assures that dm is not a multiple of N. Thus, we easily write
dm = 2Nk £ m’ as in Eq. (4) for some 0 < m' < N: the
m-th row of matrix A of Eq. (5) has entries

sin (WJ\){M) = sin <(2NHW) — +sin <mjlg”>

so this row equals the m’-th row of Si., or its opposite.
Fortunately, changing the sign of a complete row of A does
not affect its spark, so we conclude that we can consider that
the rows of A correspond to the rows of matrix S;. indexed
by the set I designed in Section II. In other words, we can
consider that A is a submatrix of Si..

Our aim is to find the characterization of d which yield
maximum spark of A. The following result provides it, and it
constitutes one of the main contributions of this work:

Theorem: For any integers 1 < d,p < N, the p x (N —1)
matrix A defined in Eq.(5) has maximum spark (p) if and only
if d and 2N are coprime.

Proof: Let us first prove that the coprimality of d and 2N is
a necessary condition for the maximum spark of A. It suffices
to show that if d is even or d is not coprime to N, then A
has not maximum spark. If d is even, we note that the first
column of A (n =1) and its last column (n = N — 1) have
opposite components:

Am,N—1 = sin (%) = sin (dmm — T4)
=1 () = -

Therefore, if d is even, these two columns of A are
proportional, hence linearly dependent, so the spark of A is not
maximum. Here we had assumed that dp < N; if dm > N,
the proposed sampling scheme will substitute the even number
dm by the index m’ defined by Eq. (4) which will be also even.
All the corresponding rows are even-indexed, so this scheme
will also provide a submatrix whose first and last columns are
proportional; therefore, the spark will not be maximum either.

Let us now suppose that d,N are not coprime, there
exist integers 1 < L < N and 1 < k < d such that
dL = Nk. Hence the column of index L < N has entries
sin (mmdL/N) = sin (mmk) = 0. In other words, the L—th
column is null, so the matrix A obviously does not have
maximum spark. This concludes the first part of the proof.

Now we prove the second part of the theorem, say, if d is
coprime to 2N, then A has maximum spark, i.e., any set of p
of its columns are linearly independent. Let us consider any
p columns with indices 0 < n; < ny < ... < n, < N. We
build the p x p square submatrix B formed by these p generic
columns; its entries are

. Tmnd
by, = sin N , 1<m<p, ne{n,ng...,npt

To prove that B is invertible, it suffices to demonstrate that
the unique row vector a = (aq, az, ..., a,) such that aB = 0
is a = 0. Let us rewrite the condition aB = 0 as

P Tmdny,
m- =V, k:17..., . 6
> asin () <0 T

m=1

By using the complex unitary numbers

dek
N

j> k=1,....p )

d
menk) so Eq.

wg = exp <

then we can express wj* —w, " = 2jsin (

(6) is easily rewritten as
p

Z am (wZL

m=1

—w, ™) =0,

If we multiply the latter expression by w?, we observe that
each wy, of Eq. (7) is a root of the polynomial
P
q(z) =Y am (z"P—zr"m) (8)
m=1

of degree 2p. Note that the coefficients of ¢ are antisymmetric
with respect to the central ones; hence, for any z # 0,
q(27') = —q(2)z7?". This implies that for any root wy,
also wk_l is also a root of ¢ :

wk_l = exp (—ﬂnkdj) k=1,..,p. ©)]

N

Let us count how many different roots of ¢ there are: it
suffices to see that their arguments do not differ in an integer
multiplied by 27. If there exist 0 < ng < ng < N such that

mrd | T d
KA TNk
N N

=2mm <= (ni tn)d=2mN
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then d would not be coprime to 2N, and it is impossible.
Therefore, ¢ has at least 2p different roots: {wy, w,;l, k=
1,...,p}. Note that they are not real numbers: from Egs. (7)
and (9) , their arguments cannot be equal to 0 or 7 since d
is coprime to 2N. Finally, it suffices to notice that z = 1 is
a real root of the polynomial ¢ defined in Eq. (8) . Hence, ¢
has 2p + 1 different roots, more than its degree, so ¢ should
be the null polynomial, and the claim follows. ([

Corollary: For any p, the first p rows of the DST1e matrix
have maximum spark.

This corollary is straightforward since d = 1 is always
coprime to any integer 2/N. As a consequence, the first consec-
utive samples of a signal {1,2,--- ,p} constitutes a universal
sampling pattern for DST1e. Finally, the FAS example given
in Section II.A verifies that d and 2N are coprime, so it is
also a universal scheme for DSTle.

IV. EXPERIMENTAL RESULTS

In this section we show some simulations where traditional
compressed sensing (CS) solvers have been applied to the pro-
posed universal FAS sampling pattern in the DST1e domain. In
each experiment, first we set the parameters /N (the length of
the signal plus 1), p (number of measurements in the transform
domain), and the difference parameter d (coprime to 2N).
Then, for each sparsity value s, 1 < s < p, a s-sparse signal
x of length N — 1 is built: its s nonzero locations are drawn
at random, and its respective nonzero values are drawn from a
normal Gaussian distribution (0, 1). We compute its DSTle
transform vector b = S;. - x, and extract its p components
indexed by the folded arithmetic sequence of difference d.

Secondly, from these p measurements we apply CS solvers,
such as: basis pursuit (BP), smoothed ¢, algorithm (SLO)
[15], and Orthogonal Matching Pursuit in its modified version
(OMP1) [16]. Each of these algorithms compute an estimation
of the sparse signal x. Finally, the experiment is repeated 100
times for each sparsity value s, and the empirical recovery rate
of each algorithm is computed for each sparsity value s.

Let us show some results obtained for N = 16, p = 8: with
this setting, we can choose any value of difference d coprime
to 2N = 32, because they guarantee universal patterns for
DSTle. On the one hand, d = 1 yields the first p = 8
consecutive samples of the transformed vector b. On the other
hand, d = 5 provides the FAS universal sampling pattern in
b already designed in Section II.A, and depicted in Fig. 1: it
corresponds to the samples {2, 3,5,7,8,10,12,15}.

Fig. 2 shows the corresponding recovery rates for the CS
solvers (SLO, BP, OMP1) along the sparsity values s, with our
new FAS approach with d = 5. As expected, high recovery
rates are obtained through these algorithms for sparsity values
s < p/2 = 4. Recall that CS theory never ensures recovery
for sparsity values s > p/2 = 4. Similar good results have
been also achieved -but not shown here- for the case d = 1.

For higher values of N, we have also analyzed the perfor-
mance for all possible values of d: by taking N = 64, p = 32,
we have considered all the differences d < N coprime to
2N = 128, say, all odd numbers 1 < d < 63. The OMP1
recovery rates with DSTle are displayed at the top of Fig.
3, where each line corresponds to a different value of d. We
observe very good behaviour for all differences d (including
the worst case, d = 1); moreover, for many choices of d (for
instance, d = 11 or d = 53), the performance of the CS solver
is highly improved.

In order to compare the behaviour of DST1le with DCTle,
simulations have been carried out using the arithmetic ap-
proach presented in [13] for DCTle, with exactly the same
setting: N = 64, p = 32 and odd differences 1 < d < 63. The
resulting OMP1 recovery rates with DCT e, illustrated at the
bottom of Fig. 3, present very similar behaviour for all values
d; but the key point is that they are clearly outperformed by
the proposed DST1e approach at the top of Fig. 3.

Finally, we have also compared simulations with random s-
sparse signals with concentrated support, say, whose support
is an (unknown) interval of length s. In [13] it was observed
that, in this scenario, the performance depended greatly on the
value of d for DCT1e. We have also analyzed it for the DSTle:
for the same setting N = 64 and p = 32, Fig. 4 compares the
recovery rates of the BP solver for d = 1 and d = 13 (coprime
to 2N) for sparse signals of concentrated support: both for
DSTle and DCTle, the choice of d = 13 outperforms greatly
the recovery rate of d = 1, which decreases dramatically.

We conclude that the behaviour of the proposed approach
for DSTle equals the DCTle for signals with concentrated
support, but in the general sparse case, the proposed DSTle
scheme outperforms clearly the DCTle approach for most
values of difference d. Hence, further studies should be carried
out to obtain the best choice of d for any given values N and
p, and for any trigonometric transform.

Recovery rate for N=16, d=5, p=8 with DST1e

T

o0 L ‘f.‘\ ...... SsLo
N - -BP
80 -
N\ OMP1
70 - ‘.“\ ~
WL N
60 - RSN
50 h w,
[ 2, \

a0 | "',‘\

2N
30 - o

S,
e,
20 - o
NN

10 "‘-._\— -~ o

1 2 3 4 5 6 7 8
Sparsity value s

Fig. 2. Recovery rate versus sparsity value s for the CS solvers SLO, BP
and OMP1 for the DSTle. In all cases N = 16, and p = 8 samples are
selected from the DST1e vector, following the FAS proposed sampling pattern
of difference d = 5.
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Fig. 3. Comparison of OMP1 recovery rates of sparse signals, versus sparsity
value, for N = 64, p = 32, considering all possible odd differences 1 <
d < 63, by using the FAS proposed sampling pattern in the DST1le domain
(top), and the existing arithmetic approach [13] for DCT1e (bottom).

V. CONCLUSIONS

In this work, novel universal sampling patterns have been
designed. They consist of a family of folded arithmetic se-
quences (FAS), that can be obtained by sampling the transform
vector at a fixed rate. Considering the DST1e, we demonstrate
the necessary and sufficient condition that guarantees that the
corresponding measurement matrix has maximum spark, so
recovery of sparse signals can be ensured. Such condition is
that the difference d of the arithmetic sequence is odd and
coprime to the length of the signal plus 1. This important
theorem constitutes the first theoretical result on maximum
spark for the DSTs. Thus, we have provided a new deter-
ministic universal compressed sensing scheme in the DSTle
transform domain. Simulations illustrate the good behaviour of
the proposed FAS technique for such values of the difference d
with DSTle, greatly improving the existing DCT1e approach.
For sparse signals of concentrated support, some values of
d > 1 outperform the case d = 1 of consecutive samples.
Future research will address the problem of finding the optimal
values of d for each scenario. Further theoretical results should
also be developed, in order to show the validity of the proposed
method for other trigonometric transforms.

Comparison of BP recovery rates for N=64, p=32

— —=DCT1e, d=1 .

——DCT1e, d=13
DST1e, d=1

—e—DSTle, d=13 | |
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70 -

60 -~
50 |
40 \
30 - \

20 -

N, >
0 8 16 24 32
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Fig. 4. Comparison of BP recovery rates of sparse signals with concentrated
support for N = 64, p = 32, obtained with differences d = 1,13 when
using the DCT1le approach [13] and the proposed FAS scheme for DSTle.
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