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Abstract—This paper explores joint sparse recovery in the
context of cooperative compressed spectrum sensing. We intro-
duce the Multi-Vector Reduced-Set Matching Pursuit (MRMP)
algorithm, an enhanced version of the Reduced-Set Matching
Pursuit (RMP) method, designed to efficiently process multivector
models without redundant computations. Unlike conventional
approaches that handle each vector separately, MRMP jointly
exploits the underlying sparsity structure, leading to improved
performance. We benchmark MRMP against Simultaneous Or-
thogonal Matching Pursuit (SOMP) and further enhance recov-
ery accuracy by incorporating a virtual data synthesis technique
that boosts the signal-to-noise ratio (SNR) before reconstruction.
Simulation and real-world SDR implementation results demon-
strate that MRMP significantly reduces computational com-
plexity while maintaining high recovery accuracy. Overall, the
proposed method improves processing speed by approximately
2.5 times compared to SOMP and by a factor of 23 compared to
cooperative RMP recovery using raw compressed measurements.

Index Terms—Joint Sparse Recovery, Compressed Spectrum
Sensing, Multi-Vector Processing, Matching Pursuit, Reconstruc-
tion, Computational Efficiency.

I. INTRODUCTION

Compressed sensing (CS) is a signal processing technique
for reconstructing a signal from a limited number of samples,
which is far below the Nyquist rate, provided that the signal
is sparse in some domain [1]. CS has found applications in
various fields, including imaging, radar, and remote sensing
[2]. In traditional CS, the dictionary matrix is assumed to be
known precisely. However, in real-world scenarios, this matrix
can be affected by noise and fluctuations [2].

The sparse recovery problem, also known as the sparse
linear inverse problem, is widely applied across various fields,
including data science, signal processing, and communications
engineering. It plays a fundamental role in CS and contributes
to feature selection and the design of efficient convolutional
neural networks in deep learning [3]. Cooperative sensing
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extends the principles of CS to scenarios in which multiple
sensors collaborate to recover a signal [4]. Joint sparse recov-
ery (JSR) is a key technique in cooperative sensing, aiming
to simultaneously recover jointly sparse signals from multiple
measurement vectors [5], [6]. Joint-sparse techniques can be
applied to Direction-Of-Arrival (DOA) estimation [5], [6].

Existing JSR algorithms, such as Simultaneous Orthogonal
Matching Pursuit (SOMP) and Orthogonal Least Squares
(OLS), have shown promise in recovering jointly sparse
signals [7]. Despite the progress in JSR, challenges remain
in developing efficient and robust algorithms that can han-
dle dictionary mismatches and noisy measurements. Current
research focuses on improving the accuracy and speed of
JSR algorithms, as well as developing methods that are less
sensitive to noise and model errors [2]. An approach involves
algorithms to solve the joint sparse recovery problem using
regularization-based methods [8].

An earlier study [9] demonstrated that Fast Matching Pur-
suit (FMP) offers notable computational speed advantages;
however, it significantly lags behind OMP in terms of recon-
struction accuracy. In this paper, we introduce a multi-vector
version of the Reduced-set Matching Pursuit (RMP) algorithm
[10] (MRMP), for JSR models. Our work modifies the RMP
algorithm to handle multiple measurement vectors, making it
suitable for JSR problems. While a direct comparison with
OMP is not favorable, we introduce a virtual data synthesis
(VDS) technique to enhance the signal-to-noise ratio (SNR)
for both MRMP and SOMP.

The remainder of this paper is structured as follows. In
Section II, we provide an overview of CS in cooperative
networks, discussing its advantages and challenges in multi-
user environments. Section III introduces the proposed MRMP
algorithm, detailing its formulation, key modifications to the
traditional RMP approach, and the integration of VDS to
enhance performance. Also it presents a complexity analysis of
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MRMP in comparison to existing joint sparse recovery algo-
rithms such as SOMP and RMP, highlighting computational
trade-offs. In Section IV, we conduct extensive simulations
to evaluate the performance of MRMP in terms of detection
probability, false alarm rate, and recovery accuracy under
various noise conditions and network sizes. Section V contains
the SDR validation of the found results to further accredit the
proposed approach efficacy. Finally, Section VI concludes the
paper with a summary of key findings and potential future
research directions.

II. COMPRESSED SENSING IN COOPERATIVE NETWORKS

CS has revolutionized signal acquisition and recovery, es-
pecially in resource-limited environments where efficiency is
crucial. This technique is particularly valuable in coopera-
tive networks, where multiple sensors jointly monitor sparse
signals while optimizing resource usage. In such setups, L
users or sensors collectively observe a sparse signal, enabling
a significant reduction in sampling rates below the Nyquist
limit without compromising recovery accuracy [5]. Recent
advancements have demonstrated CS’s effectiveness in wire-
less sensor networks and Internet of Things (IoT) applications
[9]. For example, [11] introduced a distributed CS framework
for cooperative spectrum sensing, achieving reliable signal
recovery with minimal communication overhead. Additionally,
[9] compares the performance of the recovery algorithms from
both categories: convex optimization and greedy family. Con-
vex optimization in more accurate and estimates the spectrum
with noise floor (useful for SNR estimation)

Authors in [12], [13] examine the impact of fusion rules
on support tracking and compare cooperative detection prob-
ability and false alarm rate (Qq, Q) with other existing
methods. While the proposed approaches demonstrate superior
performance, they are computationally demanding, making
them less suitable for real-time applications where speed is
a critical factor. JSR leverages inter-sensor correlations to
enhance detection in noisy, bandwidth-limited environments.
However, conventional CS methods like OMP face scalabil-
ity issues due to high computational demands, highlighting
the need for optimized algorithms for multi-user cooperative
systems.

III. MULTI-VECTOR REDUCED-SET MATCHING PURSUIT
(MRMP): ALGORITHM AND ANALYSIS

In cooperative cs networks, L users observe a sparse signal
through a sensing matrix, aiming to recover it jointly with
reduced sampling and computational burden. The proposed
algorithm extends the RMP framework [10] to efficiently
handle multiple measurement vectors, leveraging VDS and
adaptive support selection. Consider a system model where
L cooperative sensors acquire sparse spectrA X € CN*E
through a measurement matrix A € CM*N (M <« N):

y=AX+w, (D

Algorithm 1 Multi-Vector Reduced-Set Matching Pursuit
(MRMP)

Require: Sensing matrix A, measurement matrix Y, sparsity
level K, tolerance tol, parameters b, and a
Ensure: Reconstructed spectrum matrix X
1: Y < Y- (~eye(L))/(L—1) > VDS technique [13]
2 1l Y, X0 0oy, T ) > Initializations
3: for iter = 1 to K or ||rl®|, < tol do

4 crlited o |ATylitr=1]) > Compute correlation
5: crlit « crlit /max(crlited [], 1) > Normalize
6: [~, Jltd] « maxk(crl®l(:), round(b - K)) © Select

the most correlated atoms
[ind, ~] < ind2sub(size(crlt), Jliterl)
Wil « find | crl®l(ind) > a} > Thresholding
: Tl < unique([Tlter—1; Wltrl]) > Update support
10: Xferd (plier] )y« A(:, Tle)TY > Solution update
1 [~,idx] « maxk(| X0 K1)
12 Xl o Hp (XU jdx)
13: r[iter] « Y~' _ AX[iter]
14: Tl  find(sum(X[®] £ 0,2))
support
15:if [|rl®d||4, < tol or size(T[ 1) > K then
16: break
17: end if
18: end for
19: return X

0o 2 3

> Enforce sparsity
> Update residual
> Update active

where w represents measurement noise. To enhance the
SNR by a factor of L — 1, MRMP synthesizes virtual mea-
surements as proposed in [12]:

y =y (~eye(L))/(L —1), 2)

where ~ eye(L) denotes the logical negation of the
L x L identity matrix, averaging off-diagonal contributions.
This transformation improves detection accuracy by exploiting
inter-user correlations. The MRMP algorithm, detailed in
Algorithm 1, introduces key enhancements over RMP and
SOMP:

e Correlation per channel: The correlation is first normal-
ized for each channel and then sorted to account for SNR
variations and fading effects.

o Selecting Only the Top-K Proxies: To enhance efficiency,
only the K highest correlation values are sorted instead
of N values using the kmax MATLAB function.

e Adaptive Support Selection: MRMP dynamically updates
the support set by selecting a batch of s atoms per
iteration, reducing iterations from K to I = [K/s].

e VDS: The use of Y boosts SNR, enhancing robustness
against noise.

e Reduced Complexity: By pruning the search space with
parameters b and a, MRMP maintains high performance
with lower computational cost.

o Joint Support estimation: where the support selection is
processed once for all users instead of doing it separately.
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TABLE I: Complexity Comparison of MRMP, SOMP [7], and RMP [10].

Step MRMP (Y : M x L) SOMP (Y : M x L) RMP (Y : M x 1)
Tnitialization O(MN ¥+ ML) O(MN + ML) O(MN)
Correlation O(MNL) O(MNL) O(MN)
Normalization / Selection O(NL) O(NL) O(N)
Support Update O(s) O(NL) O(s)
Least Squares O(MFk? + ML) O(MFk? + MKL) O(MFK? + Mk)
Sparsity Enforcement O(NL+ KL) O(1) (implicit stop) O(N + K)
Residual Update O(MNL) O(MEL) O(MN)
Convergence Check O(ML) O(ML) O(M)
Iterations I =[K]/s] K I =TK/s]
Total Complexity O (I(MNL+ Mk*+ MkL)) | O(K(MNL+ Mk*>+ MkL)) | O (I(MN + Mk* + Mk))

Notes: N: number of atoms; M: number of measurements; L: number of users; K: sparsity level; k: support size; s: increment step in MRMP/RMP.

Recovered Support
Erroneous Support

20 5 20
SNR (dB) 20 5 . SNR (dB)

(a) Qq Simulation for modulated signals.

(b) Q¢ Simulation for modulated signals.

5 L SNR (dB) 20 8 L

(c) RMSE Simulation for modulated signals.

Fig. 1: Performance comparison of MRMP and SOMP fed by real and transformed data for @4, )y, and RMSE metrics

according to SNR and network size.

The use of multiple atom selection in MRMP accelerates
convergence by updating several support indices simultane-
ously in each iteration? where grouping updates has been
shown to significantly reduce the total number of iterations.
In MRMP, we extend this idea by processing the signal proxy
of each user independently, then performing a unified support
update across all users. This not only reduces the iteration
count but also allows the support to be computed once globally
rather than separately for each of the L users, resulting in both
computational and convergence efficiency.

A complexity comparison with SOMP [7] and RMP [10],
shown in Table I, underscores MRMP’s efficiency. Unlike
RMP, which processes a single signal (y : M x 1) with
complexity O(IM N L+IM Lk*+IMkL), MRMP handles L
users (Y : M x L) in OIMNL+ IMk*+ IMEkL), avoiding
L-fold RMP executions. Compared to SOMP, MRMP reduces
iterations from K (e.g., 68) to I = [K/s] (e.g., 4-24) by
selecting s atoms per iteration, cutting the dominant O(M N L)
term from O(KMNL) to O(IMNL). This yields:

o Comparable recovery performance to SOMP with lower

complexity.

o Fast convergence via multiple atom selection.

o Scalability for larger networks with minimal overhead.
Thus, the MRMP algorithm emerges as an effective solution
for JSR, offering a favorable trade-off between accuracy and
efficiency. The sparsity level K plays a critical role in the
performance of MRMP and is typically chosen based on prior
knowledge of signal characteristics or determined empirically
through cross-validation.

In future work, adaptive approaches—such as dynamic

support growth or residual-based stopping criteria—could be
investigated to further optimize the selection of K in real-time
scenarios. According to the findings in [13], the sparsity level
for the considered application is estimated not to exceed 6%
of the signal dimension, providing a practical upper bound for
algorithm configuration.

IV. SIMULATION RESULTS

We compare the performance of MRMP with that of
SOMP [7]. To enhance the SNR of the measurements, we
apply the VDS technique, represented by intermittent lines
in Figure 1. This figure analyzes performance using three key
metrics: Qq, (¢, and Root Mean Square Error (RMSE). In all
plots, SOMP results are shown in green, while MRMP results
appear in blue. Solid lines represent real data.

Figure la illustrates the improvement in ()3 when MRMP
is combined with VDS. As the network size and SNR
increase, MRMP, represented by the blue intermittent 3D
curve, progressively reaches the performance of SOMP. This
demonstrates that integrating VDS allows MRMP to achieve a
comparable detection probability to SOMP across all network
sizes and SNR levels.

Figure 1b presents the evolution of (); with respect to
SNR and the number of cooperating users (L). The lowest
false alarm rate is achieved when MRMP processes real data
directly from physical channels, although this configuration
does not maximize the detection probability. However, when
MRMP is fed with transformed data via VDS, it achieves a Q4
similar result to that of SOMP, regardless of whether SOMP
operates on real or transformed data.
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Fig. 2: Multi-User SDR Testbed for Joint Sparse Recovery.

Figure 1c highlights the superiority of MRMP over SOMP
in terms of RMSE under all signal conditions and coop-
eration scenarios. In particular, the RMSE is lower bound
at RMSFE i, = 0.03, a consequence of greedy algorithms
prioritizing high-amplitude components while disregarding the
noise floor.

Overall, these results confirm that MRMP, when com-
bined with VDS, delivers detection performance on par with
SOMP while significantly reducing computational complexity.
Specifically, for L=20 users, MRMP requires just 40.82%
of the computational resources used by SOMP, making it a
highly efficient alternative. Moreover, compared to separate
RMP recovery, MRMP demands only 4.35% of the resources,
yet achieves nearly the same Qg and )y values—further
underscoring its effectiveness.

V. SDR VALIDATION

To validate the proposed MRMP algorithm in a real-world
scenario, we implemented it using a Software-Defined Radio
(SDR) testbed. The setup of Figure 2 consists of four USRP
B210 devices acting as secondary users (SUs), each handling

two independent channels, resulting in a total of eight sensing
channels. A HackRF One serves as the primary user, trans-
mitting a sparse Linear Frequency Modulated (LFM) and Non
Linear Frequency Modulated (NLFM) signal, each occupying
a separate frequency band within the monitored spectrum.

The SDRs are configured to operate within a cooperative
compressed sensing (CCS) framework, where joint sparse
recovery is performed using both the MRMP and SOMP
algorithms. Signal reconstruction is performed on real data
acquired directly from physical channels as well as on trans-
formed compressed measurements processed through the VDS
technique, which enhances SNR prior to recovery.

The cooperative RMP-based recovery approach, which
involves independently reconstructing spectra before fus-
ing them for decision-making, achieves exceptional results.
Specifically, it maximizes ()4 (depicted in red in Figure 3a),
while minimizing @, (black line in Figure 3b) and RMSE
(Figure 3c). However, these performance gains come at the
cost of increased computational complexity.

The experimental results in Figure 3 confirm the effec-
tiveness of MRMP in practical conditions for network sizes
ranging from 3 to 8 SU. MRMP was compared to SOMP and
cooperative RMP using the geometric and arithmetic means
[12], [13] as fusion rules. The detection probability (Qg)
closely follows simulation results, demonstrating a significant
improvement when VDS is applied on both algorithms, as
shown in Figure 3a (blue intermittent lines are over the solid
lines of both MRMP and SOMP). MRMP approaches SOMP
when combined to VDS. The small gap comes from the SNR
instability between the channels, which was not considered in
simulations.

Figure 3b exhibits almost the lowest )y for MRMP fed
by transformed data, which confirms the simulation results.
Furthermore, the RMSE measurements in Figure 3c indicate
that MRMP achieves low reconstruction error, consistently
outperforming SOMP in terms of computational efficiency.
The cooperative RMP employing arithmetic and geometric
fusion rules achieves lower RMSE but at the cost of increased
complexity. These findings validate the feasibility of MRMP
for real-time compressed sensing applications using SDR
hardware. Figure 4 illustrates the superposition of recovered
spectra using MRPM and SOMP, alongside the original spec-
trum transmitted via HackRF One at SNR = 0 dB with
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Fig. 4: Comparison of Spectrum Recovery Methods

L = 20 secondary users. Most recovered bins align with
the occupied frequency bands, leading to an increase in Qg.
Missed detections manifest as bins leaking outside these bands,
contributing to )¢. Erroneous bins are minimal, scattered,
and vary across techniques. Notably, the absence of a noise
floor and the continuity of the recovered spectrum highlight
a key characteristic of greedy algorithms: they estimate only
the most significant bins while setting the rest to zero. As
SNR and/or L increase, the recovered bins become more
concentrated within the active sub-bands, enhancing detection
accuracy.

VI. FUTURE WORKS

While the proposed MRMP approach combined with VDS
has demonstrated significant improvements in detection perfor-
mance and computational efficiency, several avenues remain
open for future exploration:

o Adaptive User Selection: Investigating dynamic user
selection strategies based on real-time SNR estimation
to further optimize cooperative sensing.

o Machine Learning Integration: Exploring deep learning
models to refine sparse recovery techniques and improve
detection in non-stationary environments.

o Hardware Implementation: Implementing MRMP on
FPGA or GPU architectures to assess real-time feasibility
and energy efficiency in SDR-based networks.

+ Extended Signal Models: Extending the approach to
handle non-linear distortions and wideband spectrum
sensing scenarios.

o Theoretical Performance Bounds: Deriving analytical
bounds on the detection probability and false alarm rate
under different noise and sparsity conditions.

VII. CONCLUSION

This work introduced an enhanced CCS framework lever-
aging the MRMP algorithm in conjunction with a VDS
technique. The proposed method significantly reduces compu-
tational complexity while maintaining detection performance
comparable to traditional JSR techniques such as SOMP.
Specifically, MRMP achieves a speedup of approximately 2.5
times over SOMP and 23 times over separate RMP execu-
tions, requiring only 4.35% of the computational resources of
separate RMP recoveries.

Experimental results on real-world SDR-acquired data con-
firm the effectiveness of MRMP, demonstrating superior detec-
tion performance while drastically reducing processing time.
The integration of VDS further enhances SNR, improving the
robustness of the spectrum sensing framework. These findings
highlight the potential of MRMP as a scalable and efficient
alternative for CCS in cognitive radio networks. The MRMP
algorithm is particularly suited for practical deployment in
real-time spectrum monitoring systems due to its low com-
putational overhead. Potential applications include cognitive
radio networks, dynamic spectrum sharing frameworks, and
lightweight spectrum sensing in IoT systems where energy
and speed constraints are critical. Future work will focus on
adaptive user selection, deep learning-based enhancements,
and hardware implementations to further refine and deploy
the proposed approach in real-world applications.
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