
Box-constrained ℓ0 Bregman relaxations
Mhamed Essafri
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Abstract—Regularization using the ℓ0 pseudo-norm is a com-
mon approach to promote sparsity, with widespread applications
in machine learning and signal processing. However, solving such
problems is known to be NP-hard. Recently, the ℓ0 Bregman re-
laxation (B-rex) has been introduced as a continuous, non-convex
approximation of the ℓ0 pseudo-norm. Replacing the ℓ0 term with
B-rex leads to exact continuous relaxations that preserve the
global optimum while simplifying the optimization landscape,
making non-convex problems more tractable for algorithmic
approaches. In this paper, we focus on box-constrained exact
continuous Bregman relaxations of ℓ0-regularized criteria with
general data terms, including least-squares, logistic regression,
and Kullback-Leibler fidelities. Experimental results on synthetic
data, compared with Branch-and-Bound methods, demonstrate
the effectiveness of the proposed relaxations.

Index Terms—ℓ0-relaxation, non-convex optimization, contin-
uous exact relaxations, box constraint.

I. INTRODUCTION

Given a possibly undetermined (M ≤ N ) forward matrix
A ∈ RM×N and vector of observations y ∈ RM , we consider
problems of the form

x̂ ∈ argmin
x∈[l,u]N

{
J0(x) := Fy(Ax) + λ0∥x∥0 +

λ2
2
∥x∥22

}
(1)

where l ∈ R≤0 ∪ {−∞} and u ∈ R≥0 ∪ {+∞} define a box
constraint, the terms ∥ · ∥2 and ∥ · ∥0 denotes respectively
the squared ℓ2 norm and the ℓ0 pseudo-norm that counts
the number of non-zero elements in a vector of RN . The
hyperparameters λ0 > 0 and λ2 ≥ 0 control respectively
the sparsity and the ℓ2 ridge regularization strengths. Finally,
Fy : RM 7→ R≥0 is a data-fidelity function that measures
the discrepancy between the model Ax and the data y, and
satisfies the following assumption.

Assumption 1: The data fidelity function is coordinate-wise
separable. i.e, Fy(z) =

∑M
m=1 f(zm; ym), where for each y ∈

R, f(·; y) is convex, proper, twice differentiable on (l, u) and
bounded from below.

Beyond the popular least-squares function, exemplar in-
stances of such data-fidelity terms include the Kullback-
Leibler divergence [1] and logistic loss [2], which arise in
signal/image processing and machine learning applications.
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Remark 1: To simplify the presentation, we consider in (1)
the case where l := l1 = l2 = · · · = lN and u := u1 =
u2 = · · · = uN , i.e. the same box constraint is applied to
each component. Note, however, that our results can be easily
extended to the general case.

A. Related Works

While the ℓ0 pseudo-norm is the most natural choice for
enforcing sparsity, its discontinuity, non-convexity, and non-
smoothness make the associated problem (1) NP-hard [3].
Yet there exists a vast literature related to this problem. One
approach is to address the original problem directly, such
as with the Iterative Hard Thresholding (IHT), which can
be extended to this setting and guarantees convergence to
a critical point [4]. In [5], the authors studied the proximal
mapping of the ℓ0 function over symmetric sets that satisfy a
submodularity-like property (SOM) and developed algorithms
that converge to critical points. For moderately sized problems,
branch-and-bound (BnB) methods offer exact solutions at a
reasonable computational cost [6], [7].

In this work, we focus on exact relaxation approaches,
which replace the ℓ0 pseudo-norm with a continuous (non-
convex) penalty function while preserving global minimiz-
ers [8]–[13]. Moreover, such relaxed formulations remove
some local minimizers of the initial problem, making the opti-
mization landscape more favorable to optimization algorithms.
In this context, the authors in [8] proposed an exact relaxation
using a capped-ℓ1 penalty for cases where Fy(A·) + λ2

2 ∥ · ∥22
is convex, Lipschitz continuous, and non-smooth, applicable
to both unconstrained and box-constrained cases. Building on
this, they developed a smoothing proximal gradient (SPG)
algorithm to find a stationary point of the relaxed prob-
lem, which corresponds to a local minimizer of the original
problem. However, for the previously mentioned data-terms,
Fy(A·)+ λ2

2 ∥ · ∥22 is not necessarily Lipschitz continuous. For
this setting, quadratic envelopes of the ℓ0 pseudo-norm [9],
including the continuous exact ℓ0 (CEL0) penalty [10], enable
exact relaxation for least-squares data terms. Recently, these
ideas have been generalized with the introduction of the ℓ0
Bregman relaxation (B-rex), providing exact relaxations for
general (non-quadratic) data terms [11], [12]. Additionally,
the work in [13] proposed a weighted-CEL0 relaxation for
weighted-ℓ2 data terms, offering an approximation of the
KL divergence. While these approaches are limited to the
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unconstrained case, in this paper, we extend the works of [11],
[12] to box-constrained problems.

B. Contributions and Outline

In this work we extend the framework of exact continuous
ℓ0 Bregman relaxations, originally proposed for unconstrained
and non-negatively constrained problems [11], [12], to box-
constrained problems of the form (1). More precisely, we
provide in Proposition 2 an exact relaxation result. In view
of designing effective numerical schemes solving the relaxed
problem, we consider in Section IV some proximal-based
schemes showing, in particular, how the proximal operator
of the proposed exact penalty can be efficiently computed.
In addition, we will show that the relaxed problem can
be minimized via iteratively reweighted ℓ1. In Section V,
we compare the minimization of the relaxed criteria with
both BnB and IHT procedures showing good agreement with
certified global procedures in the case of small-size problems
and the applicability of the approach to larger-scale problems.

C. Notations

Let [N ] = {1, 2, . . . , N} denote the set of indices up to
N . The symbol 0 ∈ RN represents the vector of all zeros,
and for each n ∈ [N ], en ∈ RN denotes the unit vector of
the standard basis in RN . The set R≥0 = {x ∈ R | x ≥ 0}
represents the non-negative real line. For n ∈ [N ], x(n) =
(x1, . . . , xn−1, 0, xn+1, . . . , xN ) denotes the vector x with the
n-th component replaced by 0.

II. BOX-CONSTRAINED B-REX

In this section, we extend the ℓ0 Bregman Relaxation (B-
rex) introduced in [11] to the box-constrained Problem (1).
Consider a family Ψ = {ψn}n∈[N ] of strictly convex, proper,
and twice-differentiable functions such that dom(ψn) ∈
{R,R≥0} (note that R≥0 is allowed only when l = 0). We
define the box-constrained B-rex as Bl,uΨ : [l, u]N → R≥0 such
that for all x ∈ [l, u]N :

Bl,uΨ (x) = sup
(α,z)∈C

α−DΨ(x, z) (2)

where

C =
{
(α, z) ∈ R× dom(Ψ) s.t. α−DΨ(·, z) ≤ λ0∥ · ∥0 + I[l,u]N

}
and I[l,u]N (x) = {0 if x ∈ [l, u]N ; +∞ otherwise} and DΨ

denotes the Bregman divergence associated to Ψ. It is defined,
for all x, z ∈ dom(Ψ) by

DΨ(x, z) =

N∑
n=1

dψn(xn, zn) (3)

with dψn(x, z) = ψn(x) − ψn(z) − ψ′
n(z)(x − z) ∀x, z ∈

dom(ψn). Standard choices of the functions ψn are the p-
power functions, the Shannon entropy and the Kullback-
Leibler divergence, see [11], [12]. Note, that as opposed to
the unconstrained B-rex proposed therein, the extension (2)
depends on the box-constraint through the term I[l,u]N .

Proposition 1 (Closed form expression of Bl,uΨ ): For all n ∈
[N ], let α−

n ≤ 0 and α+
n ≥ 0 be such that [α−

n , α
+
n ] defines

the λ0-sublevel set of dψn(0, ·). Then, for every x ∈ [l, u]N ,
we have Bl,uΨ (x) =

∑N
n=1 β

l,u
ψn

(xn), where, for x ∈ [l, u], the
functions βl,uψn are defined by

βl,uψn(x)=


ψn(0)− ψn(x) + κ−n x, if x ∈ (η−n , 0],

ψn(0)− ψn(x) + κ+nx, if x ∈ [0, η+n ),

λ0, if x ∈ [l, u]\(η−n , η+n ).

where η−n = max{α−
n , l}, η+n = min{α+

n , u}. Moreover, for
l ̸= 0 and u ̸= 0, the slopes κ−n and κ+n are given by

κ−n =

{
ψ′
n(α

−
n ), if α−

n ≥ l,

l−1 (λ0 + ψn(l)− ψn(0)) , if α−
n < l,

κ+n =

{
ψ′
n(α

+
n ), if α+

n ≤ u,

u−1 (λ0 + ψn(u)− ψn(0)) , if α+
n > u.

The proof can be found in the supplementary material of
this paper available online [14]. In Figure 1, we present one-
dimensional examples of box-constrained B-rex. We distin-
guish two cases. In the first one (left graph), the box-constraint
[l, u] contains the interval [α−, α+] where the unconstrained
B-rex [11] is non-constant. In this case, both box-constrained
and unconstrained B-rex coincide. In the opposite situation
where [l, u] ⊂ [α−, α+] (right graph), the box-constrained B-
rex deviates from its unconstrained (showed in gray) counter-
part.

Equipped with the box-constrained B-rex (2), we consider
the following continuous relaxation of J0 for x ∈ [l, u]N ,

J l,uΨ (x) = Fy(Ax) +Bl,uΨ (x) +
λ2
2
∥x∥22. (4)

III. EXACT RELAXATIONS PROPERTIES

In Theorem 2, we provide conditions on Ψ so that JΨ is an
exact relaxation of J0, as originally defined in [10], meaning
that it preserves global minimizers while eliminating certain
local ones.

Theorem 2 (Exact relaxation property): Let Ψ be such that,
∀n ∈ [N ] and ∀t ∈ (η−n , 0) ∪ (0, η+n )

∂2

∂t2
Fy(A(x(n) + ten)) + λ2 < ψ′′

n(t), (5)

where x(n) = (x1, . . . , xn−1, 0, xn+1, . . . , xN )T . Then,

argmin
x∈[l,u]N

J l,uΨ (x) = argmin
x∈[l,u]N

J0(x), (6)

x̂ local minimizer of J l,uΨ over [l, u]N

=⇒ x̂ local minimizer of J0 over [l, u]N . (7)

Proof. This result is a direct generalization of [11, Theorem
9]. It relies on three facts: i) J l,uΨ (x) ≤ J0(x) ∀x ∈ [l, u]N

(by definition of Bl,uΨ ), ii) ∀x /∈
∏
n∈[N ](η

−
n , 0) ∪ (0, η+n ),

J l,uΨ (x) = J0(x) (from Proposition 1) and iii) under (5)
∀n ∈ [N ], t 7→ J l,uΨ (x(n) + ten) is strictly concave on both
(η−n , 0) and (0, η+n ). □
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Fig. 1: Box-constrained B-rex (λ0 = 2, ψ = 1/2∥ · ∥22) when (left) [l, u] ⊇ [α−, α+] and (right) [l, u] ⊆ [α−, α+].

IV. MINIMIZING J l,uΨ

In this section, we discuss the optimization of the relaxed
problem through two different optimization algorithms: the
forward backward splitting (FBS) [15] and the iteratively
reweighted ℓ1 (IRL1) [16].

A. Forward-Backward Splitting Algorithm

The FBS or proximal gradient algorithm consists of the
following time stepping scheme for a given initialisation x0

and step-size ρ > 0:

xk+1 ∈ proxρ(Bl,uΨ +I[l,u]N )

(
xk − ρ(AT∇Fy(Axk) + λ2x

k)
)
.

It requires the ability to efficiently evaluate the proximal oper-
ator of Bl,uΨ + I[l,u]N . Since B-rex is a separable penalty, this
computation reduces to evaluate independent one-dimensional
proximal operators, for which a closed-form expression can
be derived (for standard choices of Ψ) from the following
proposition.

Proposition 3: Let ρ > 0 and n ∈ [N ]. For x ∈ R, the
proximal operator of ρβl,uψn is given by

proxρβl,uψn
(x) = argmin

v∈[l,u]∩V(x)

{
βl,uψn(v) +

1

2ρ
(v − x)2

}
(8)

where V(x) = {l, 0, x, u} ∪ Sx with Sx = {v ∈ R : v −
ρψ′

n(v) = x− ρκ±n }.
Proof. The proof can be found in Appendix A. □

The functional J l,uΨ satisfies the Kurdyka-Łojasiewicz prop-
erty, hence taking 0 < ρ < 1/L, with L being the Lipschtiz
constant of the gradient of Fy(A·)+λ2/2∥ · ∥22, the sequence
{xk}k generated by FBS converge to a critical point of
J l,uΨ [4]. Alternatively, a backtracking strategy can be used (see
Section V) to estimate the step-size at each iteration, which
helps improving the convergence speed.

B. Iteratively Reweighted ℓ1
The Iteratively Reweighted ℓ1 (IRL1) algorithm belongs

to the class of majorization-minimization (MM) algorithms,
which iteratively construct minimizing sequences of surrogate
functions that upper-bound the original objective function. The
optimization process consists of two main steps. First, in the
majorization step, the objective function is upper-bounded by

a surrogate equal to it at the current point. For symmetric B-
rex (i.e., βl,uψn(x) = βl,uψn(|x|) ∀(x, n) ∈ [l, u]×[N ], as those we
use in our experiments), we consider the following weighted
ℓ1-norm

J̃(x) = Fy(Ax) +
N∑
n=1

wn|xn|+
λ2
2
∥x∥22,

where the weights {wn}n are such that wn ∈ ∂βl,uψn(|xn|).
Then, the minimization step consists of minimizing J̃ over
the set [l, u]N . This is achieved using the Projected FBS
algorithm by simply considering the (closed-form) proximal
operator of x 7→

∑N
n=1 wn|xn| +

λ2

2 ∥x∥22. Again as the
Kurdyka- Łojasiewicz property holds for J l,uΨ , convergence of
the iterative scheme to a critical point can be shown following
[16].

V. EXPERIMENTS

A. Data Generation

Forward Matrix Generation: We generate a the matrix
A ∼ N (0,Σ) of size 500× 1000 from a multivariate normal
distribution with mean zero and covariance matrix Σ. The
covariance Σ follows an exponential correlation model, where
its entries are defined by σij = ρ|i−j| for 1 ≤ i, j ≤ N ,
with the parameter ρ ∈ [0, 1] controlling the correlation
strength. We then consider two differents settings to generate
the observation vector y ∈ RM according to the data term Fy

of interest.
• Least-Square (LS), Fy(Ax) = 1

2∥Ax − y∥2 : follow-
ing [7], we define a sparse vector x∗ ∈ RN with k∗ ∈ N
non-zero equispaced entries, each sampled from a uni-
form distribution in the interval [l, u]. The observation y
is then generated by y = Ax∗+ε, where εi ∼ N(0, σ2).
The signal-to-noise ratio (SNR) measure defined as

SNR =
Var(Ax∗)

Var(ε)
=

(x∗)TΣx∗

σ2

is used to control the level of noise on the data y.
• Logistic Regression (LR), Fy(Ax) =∑M

m=1 log (1 + exp([Ax]m)) − ym[Ax]m: As for
LS, we generate a k∗-sparse vector x∗ with equispaced
non-zero entries, each equal to 1. Each coordinate of
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the label vector y is binary, with ym ∈ {−1, 1}, where
ym = 1 is determined with probability

P (ym = 1 | am) = 1/
(
1 + e−s⟨am,x

∗⟩
)
,

where am is the m-th row of A and s > 0 controls
the SNR. The labels y are sampled from a Bernoulli
distribution.

B. Algorithmic Setting and Parameter Selection

Benchmarked Algorithms: We compare the performance
of the following four methods in solving Problem (1) for 20
realizations of forward matrices A and vectors y.

• IHT [4] on the original problem,
• FBS on the proposed exact relaxation (Section IV-A)
• IRL1 on the proposed exact relaxation (Section IV-B)
• BnB [7] on the original problem. It can guarantee the con-

vergence to a global minimizer for small-scale problems.
Parameters: For LS problems, initialization was set as

x0 = 0 for all algorithms. The same choice was also made
for LR problems for all algorithms except for IHT, where the
initialization x0 = ATy was considered. Indeed, as shown
in [11, Lemma 1], x0 = 0 is a local minimizer of J0 (note
that 0 is, in contrast and algorithms that minimize J0 (as
IHT) may thus be stuck at the initial point x0 = 0. As for
FBS, we implemented IHT with a backtracking strategy to
accelerate convergence and to favour (upon large initial time
steps) escape from the local minimizer x0 = 0 for the LS case.
As this turned out to be harder for LR, a different initialization
was chosen instead. We fixed the convergence tolerance to a
relative change between consecutive iterates below 10−7.

The hyperparameter λ0 is set as λ0 = αFy(0), with α ∈
(0, 1) chosen so that the BnB solver provides a solution with a
support cardinality close to the ideal k∗, in all experiments. For
the LS problem, we set λ2 = 0, focusing purely on sparsity,
while for the LR problem we used λ2 = 1. As far as the gener-
ating functions ψn are considered, we set ψn(x) = (γn/2)x

2,
with γn = λ2 + ∥an∥22 + 1e−10 > λ2 + ∥an∥22 for LS and
γn = λ2 + 0.25∥an∥22 for LR. This choice ensures that the
exact relaxation condition (5) is satisfied.

C. Results and Discussion

We assess the quality of the minimization using the value of
the original function J0 at convergence. For each algorithm,
we thus computed this value for each realization of (A,y).

BnB with certification of the global solution: The left panels
of Figures 2 and 3 present results for LS and LR problems
when k∗ = 10 and k∗ = 7, respectively. In these cases,
the BnB solver consistently finds (and certifies) the global
optimum. From these results we can thus observe that the
minimization of the proposed exact relaxation with either IRL1
or FBS also often leads to the global minimizer. In contrast,
this is not the case when directly tackling the original problem
with IHT.

BnB without certified solutions: In the right panels of
Figures 2 and 3, we consider the case of less sparse vectors

(k∗ = 25), where BnB fails to certify optimality within the
given time limit (30 minutes, whereas FBS and IRL1 solve
the relaxed problem in an average time of 2.9s/3.87s for the
LS cases and 0.63s/0.62s for the LR cases, respectively).
In the LS setting, BnB appears to be far from the global
optimum, as minimizing the relaxed problem yields solutions
with a lower objective function value. Conversely, in the LR
setting, while BnB does not certify optimality, it still finds
solutions with the lowest objective function value, followed by
methods minimizing the proposed relaxations. The difference
in performance of the BnB between LS and LR can be
attributed to the presence of the ℓ2 term in the case of LR
(λ2 > 0). As shown in [7], the incorporation of the ℓ2
term improves the relaxation quality for pruning tests, which
explains why BnB performs better in the LR setting. This is
further supported by the additional experiment we provide in
the supplementary material [14]. There, we set λ2 > 0 in the
LS experiment with k∗ = 25 and one can observe that the
BnB performs better than the other methods.

VI. CONCLUSION

We introduced the constrained ℓ0 Bregman relaxation
which continuously approximate the ℓ0 pseudo-norm within
a bounded domain [l, u]N . By replacing the ℓ0 pseudo-norm
with this constrained B-rex, a continuous optimization problem
that preserves the same global minimizers as the original
one and exhibit fewer local minimizers is obtained. This
relaxation makes the problem more amenable to standard non-
convex optimization algorithms, such as the proximal gradient
method and the iteratively reweighted ℓ1 (IRL1) algorithms.
Through several numerical experiments, we demonstrated that
our approach compares well to Branch-and-Bound (BnB)
approaches, achieving strong agreement with certified global
solutions provided by BnB in small-scale problem settings.

APPENDIX

A. Proof of Proposition 3
The proof follows from the fact that (see [11, Section 3.2]):

∂βl,uψn(v) =


{−ψ′(v) + κ−n } if v < 0

{−ψ′(v) + κ+n } if v > 0

{−ψ′(0)}+ [κ−n , κ
+
n ] if v = 0

Recalling that

proxρβl,uψn
(x) = argmin

v∈[l,u]

{
βl,uψn(v) +

1

2ρ
(v − x)2

}
,

the first-order optimality condition states that

0 ∈ 1

ρ
(v − x) + ∂βl,uψn(v) +N[l,u](v),

where N[l,u] is the normal cone1 to [l, u], defined as

N[l,u](v) =


{0} if v ∈ (l, u),

t ≥ 0 if v = u,

t ≤ 0 if v = l.

1The normal cone of a set C ⊂ R is defined as: ∀x ∈ C, NC(x) =
{t ∈ R | ⟨t, z − x⟩ ≤ 0 ∀z ∈ C}.
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Fig. 2: LS: (ordered) values J0(x̂) obtained by each method along the 20 problem instances. For the left plot λ0 = 2×10−2Fy(0)
and k∗ = 10. For the right plot λ0 = 5× 10−3Fy(0) and k∗ = 25. Finally, [l, u] = [−1.5, 1.5], ρ = 0.9 and SNR = 10.

Fig. 3: LR: (ordered) values J0(x̂) obtained by each method along the 20 problem instances. For the left plot λ0 = 2.5 ×
10−2Fy(0) and k∗ = 7. For the right λ0 = 1.5× 10−2Fy(0) and k∗ = 25. Finally [l, u] = [−1, 1], λ2 = 1, ρ = 0.9, s = 1.

It follows that the possible solutions of the proximal operator
are included in {0, x, l, u}∪Sx, where Sx is the set of solutions
of the equation: −ψ′

n(v) + κ±n + 1
ρ (v − x) = 0.
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