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Abstract—We present, in this work, a new approach for artifact
extraction in digital radiography. We propose to decompose
the observed image into two components: exclusively clinical
and joint. The latter component is then represented by two
sparse dictionaries to account for the artifact and the residual
clinical content. Both dictionaries are learned to maximize the
performance of the method. Application on ringing stripe artifact
extraction over a large dataset of medical X-ray images, show
better performance for our method in comparison to unimodel
and bimodel approaches.

Index Terms—X-ray, Sparse Dictionary Learning (SDL), Joint
Modeling.

I. INTRODUCTION

Under extreme condition, X-ray radiography can suffer from
several cosmetic artifacts (deterministic or stochastic) that
impair proper analysis of their medical content [1], [2] such
as ringing stripe artifacts (Figl).

A first approach to remove the artifacts consists in using a
single model (unimodel) for the artifact for its extraction [2]-
[4]. These methods are relatively fast. However, they lack a
proper model for the clinical content. Thus, they can remove
vital clinical information because of shared features with the
artifact.

A second approach proposes a bimodel for the clinical
content and the artifact as in [5] and [6]. The later works
propose joint sparse dictionary representation. This allows a
better estimation of the artifact without degrading the clinical
content. However, a relatively big dictionary is necessary for
the clinical content which is computationally intensive.

The aim of this work is to introduce a TRImodel with
sparse Dictionary ENcoding Technique: TRIDENT, where
the observed image is represented by two components. The
first, the Exclusively Clinical Component (ECC), is repre-
sented by a basic model that accounts for features only present
in the medical content. The second, Joint Component (JC), is
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composed of a mixture between the artifact and the residual of
the clinical content. The joint component is represented by a
joint sparse dictionary model. The advantage of this approach
is that the dictionary of the residual clinical content is smaller
and the estimation runs faster.

We apply TRIDENT to the extraction of the ringing stripe
artifacts where several sequences of bright and dark lines add
to the image at random positions (Fig.1). Their intensities vary
across the columns in a random oscillating pattern (ringing).

II. OBSERVATION MODEL

The stripe artifacts A € R™ are considered additive to the
clinical content C € R™ . Thus, the image ) € R™ observation
model reads:

Y=C+A (1)

Where 7 is the number of pixels. It is generally large (n ~ 10°
pixels) which leads to computationally intensive methods.
Therefore, we adopt in this work a patch-based approach
where we divide each image ) into several patches y; € R"»:

Yi = ¢+ a4 ()

With n, = p, X p. is the number of pixels in a patch, p, is
the number of rows and p,. is the number of columns.

A. Unimodel

Filtering approaches such as [2]-[4] focus on estimating .4
based on prior knowledge only about the artifact, without any
model for the clinical content. Then, a notch filter is designed
to eliminate the frequency generated by the artifact:

C = filt, (V) 3)

However, the filter removes the medical content frequencies
in the same interval.
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Fig. 1. (a): Radiography of a foot with different types of ringing stripe artifacts
(b): Profile over a row with a ringing stripe artifact and the ground truth.

B. Bimodel sparse dictionary representation

Unimodel approach is insufficient, since it lacks a model
for the clinical content. Therefore, several works, as [5] and
[6], propose a joint sparse dictionary representation for ¢; and
a;:

Yi = Dcxe, + Dazg, + € =Dz + € @)

With Do € R *kc and D4 € R *k4 the dictionaries for
the clinical content and the artifact respectively. z,, € R¥c
and z,, € R¥4 are the corresponding weight vectors. These
can be combined in one dictionary with D = [Dc | D A] S
R7»*(kctka) the concatenation of D¢ and D4 and x; =
[ze, | xai]T € RFe+ka ¢ stands for the representation errors.

x; is supposed sparse and only a few elements are nonzero.
Thus, solving equation (4) is done using sparse representation
algorithms such as pseudo-{y norm algorithms [7], [8] or ¢4
norm [9] or [10] imposing a limit of nonzero elements Ly €
N* in z; that is:

&; = argmin| Dz; — yz||§ s.t ||zillo < Lo 5)

Zq

C. Trimodel with exclusive clinical component and sparse
dictionary representation for the joint component

The model proposed in (4) tries to represent all the clinical
features in D¢ which results in a big dictionary. We propose
to simplify the later model by separating the clinical content
into two parts: C. which contains exclusive clinical features
and C, the residual component. We rewrite the observation
model for a patch i:

y’i = Ce,‘ + Cri + ai (6)
Then, we represent ¢, and a; by two sparse dictionary models
Yi = e, + Do, we,, + Data, +€=ce, + Dyxi+€ (7)

The principal motivation is that we want to discriminate the
artifact only for ambiguous areas and remove from the clinical
dictionaries all features that are unambiguous with respect to
the artifact. This leads to smaller clinical dictionaries and less
decomposition error because it is done only over the common
component.

The choice for the estimation of the C. is the key of the
quality of the artifact correction. For better extraction, C.
should represent the clinical information without capturing the
artifact.

III. PROPOSED METHODOLOGY
A. Exclusive Clinical Content Estimation

We view the exclusive clinical component (ECC) C. esti-
mation as a rough approximation of the clinical content. We
handle it in a filtering framework as in a unimodel approach.
The filter should be designed without being porous to the
artifact. It must remove most of the clinical content. Therefore,
it is designed as a tradeoff between the quantity of clinical
features capture and its non-porous properties to the artifact.

In this article, we choose the moving median to be the best
tradeoff. It has the ability to capture a lot of complex clinical
features (sharp edges as well as low-frequency features) and
needs small computation time.

The dimension of the median kernel must be defined with
respect to the artifact features. In the case of the ringing stripe
artifact, we choose a rectangular window with more rows than
columns.

B. Sparse Dictionary Learning

The residual clinical dictionary D¢, and the artifact dic-
tionary D4 are a crucial component of our model. They
can be obtained by design or learning. However, learned
sparse dictionaries have shown their superiority compared to
fixed dictionaries due to the variety of the clinical content
and the artifacts [11], [12]. Several algorithms allow learning
sparse dictionaries [13], [14], [15]. We adopt an alternating
minimization learning scheme for D¢, and Dy.

Let D; € R™** be the dictionary of k atoms to learn over
a database stored in Y € R™» %9 (each y; is a sample from the
database stored as a vector in Y and .S the number of samples).
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Fig. 2.
dictionary (only 64/256 atoms showed for each dictionary).

By fixing X® as the current sparse solution minimizing the
error between Y and D; X at iteration ¢, we write:

DY £ argmin|ly — DX O3, ®)
DIGS

With Dl(tH) the updated dictionary, || || denoting the
Frobenius norm, S a constraint set.

We use (8) for both artifact D4 and the residual clinical
content dictionary learning D¢,.. When learning D¢, the
learning data is preprocessed by subtracting C. from the
training samples.

C. Proposed Algorithm

Using the image formation model defined in equation (7),
we propose to estimate and remove the artifact A. First, C,
is subtracted from the image. Then, Z., and Z,, are jointly
computed using (5) and the artifact estimation is a; = D A2, .
Finally, the clinical content is obtained by subtracting the

artifact (ie. C = Y — A). Algorithm 1 presents TRIDENT
in detail.

IV. APPLICATION
A. Overview

We evaluate our method on several types of ringing stripe
artifact composed of 4 intensity profiles (presented in Fig.1).
Then ) is obtained by adding the artifact to a real X-ray
image extracted from a dataset of feet and hands provided by
the Centre Hospitalier Régional d’Orléans (under the patient
cohort described in Acknowledgment).

We compared our proposition to two different methodolo-
gies adapted to remove this artifact since we are unaware
of any existing solution in the literature. We compared to a
unimodel adapted from [4] and a bimodel sparse dictionary
method with learned artifact dictionary [5], [6] denoted ~Uni-
model” and “Bimodel” respectively.

We extract horizontal patches p, = 4,p. = 32 with a half
overlap from the image to account for the strong horizontal

NI [ e, | (IEFINTITOT
[T I )
| T e e
loam = U T — .- |

(a): Clinical dictionary learned without the removal of the ECC, (b): Clinical dictionary learned with the removal of ECC, (c): Artifact learned

Algorithm 1 TRIDENT Algorithm

Require: Y (input image), D, = [DCT | D A} (dictionaries),
Ly (sparsity limit)

LA« C

: Estimate C, from Y: C, « filt(Y)

: Remove the C, from V: YV, «+ Y —C.

:fori=1to P do

Extract the i patch from ).

Yi < Riyr

6: Solve image representation model (7):

[V VR

T = [i"cz | iai]T = arg;ninHDrxifyng s.tlzillo < Lo
7: Estimate the artifact and restore it in 2D :
a; = DaZy,
A+ A+ R '
8: end for

9: Correct the input image from the artifact:
C=Yy-A

10: return C (estimated clinical content over the image)

aspect of the artifact. We use the moving median filter with
11 rows and 3 columns window to obtain C,.

We learned 2 clinical dictionaries Do and D¢, over 1
million samples randomly extracted from the aforementioned
dataset with both the same parameters: ko = 256 components
and Ly, = 3 maximum nonzero components to use for rep-
resentation. The full clinical content dictionary D¢ (Fig.2.a)
learns most of the clinical features but lacks precision: only
low frequency features learned and unambiguous with the
artifact (low vertical features for example).

On the other hand, the residual dictionary D¢, (Fig.2.b)
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Fig. 3. Comparison of each method (arranged by columns) applied to a ringing stripe artifact removal from an X-ray image of a foot with medical screws.
First row compares the output correction (zoom in the bottom right corner) to the ground truth (a), second row the clinical content error (zoom in the bottom

right corner) and (e) the normalized decumulative histogram of error.
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Fig. 4. Clinical representation estimation with dictionaries. (a): Decumulative histogram of error of the clinical content between the dictionary representation
and the ground truth, (b): Ground Truth C , (c): With ECC removal (C,- + C¢). (d): Without ECC removal (C).

has higher frequency features, ambiguous with the artifact.
All of the unambiguous features have been removed and are
represented by C..

We also learned an artifact dictionary D4 of kg4 = 256
components over ringing stripes with a maximum of nonzero
components to use fixed at Ly, = 3 and presented in Fig.2.c.
The training samples are retrieved at different locations since
we aim to represent each translation possible of the artifact.
Orthogonal Matching Pursuit [8] is used to estimate the sparse
code z; during the inference phase with Ly = Lo, + Lo, =
3+ 3.

To improve the results, we used an ad hoc artifact detection
function based on the fact that this kind of artifact appears
over the width of the image. We measured the normalized
profile sum of the artifact representation A for each row and
made a binary decision for the detection of the artifact for a

row with respect to a threshold. This method has been applied
to each method (unimodel, bimodel and TRIDENT) with the
same parameters.

B. Qualitative Evaluation

We study qualitatively an artifact correction example in
Fig.3. Our method allows a better extraction of the artifact
(Fig.3.b & Fig.3.f) with minimal underestimation. The bimodel
approach (Fig.3.c & Fig.3.g) underestimate the artifact since
some of it is captured by the clinical model. However, the
unimodel is unable to capture the complexity of the artifact
because of the simplicity of its model. Most of the varying
features of the artifact have been missed (Fig.3.d & Fig.3.h)
creating dashed pieces of the residual artifact.

Furthermore, we compare the final artifact correction for the
bimodel method (C) and TRIDENT (C, +C.) in Fig.4. Thanks
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to the ECC separation, TRIDENT outperforms the bimodel
reconstruction, thus reducing the risk of the overestimation
of the artifact over the clinical content. Nevertheless, this
estimation is less accurate than the correction C (Algorithm 1)
as pointed out by the error histogram of the clinical estimation
(Fig.4.a) vs. (Fig.3.e).

C. Quantitive Evaluation

The normalized decumulative histograms of error com-
parison between the different methods Fig.3.e shows that
TRIDENT produces fewer errors. The other methods small
errors are comparable. However, the unimodel generates big-
ger errors since it lacks a proper model for the artifact and
clinical content.

We also applied TRIDENT over 952 clinical images (same
dataset) of feet and hands with ringing artifacts at random
levels and, positions over the images. The PSNR and a
SafeGuarding Measure (SFM), that measures the percentage
of erroneous pixels, are evaluated:

lc—Cl3

n

SFM = |

€=clo o,
n

PSNR = —10log,,

with || @ ||2 denoting the /5 norm and || e ||o the £, one.

Computing the mean metrics over the whole dataset (Table
I) demonstrates that our method outperforms all the other
methods. TRIDENT offers higher PSNR and lower SFM
(safer). Even if the bimodel method can estimate the artifact
in general, it fails in complex scenarios (screws in Fig.3.c). It
also has the highest SFM results because the clinical dictionary
is less efficient, the artifact dictionary has taken a major part
of the representation resulting in an overestimation in some
cases (Fig.3.g).

To improve the performances of this method, a large number
of atoms must be added in the clinical dictionary leading
to much higher computation time diminishing its appeal.
Moreover, adding more atoms does not guarantee a better
correction because more atoms increase the risk of learning
shared features with the artifact. With TRIDENT, this is
avoided by removing the exclusively clinical component.

TRIDENT  Bimodel = Unimodel
PSNR (dB) 70.3 59.8 52.1
SFM (%) \ 0.75 1.7 1.2
TABLE I

PSNR AND SFM MEASUREMENTS

V. CONCLUSIONS

We presented a trimodel approach for artifact extraction
in X-ray images, where the observed image is divided into
exclusively clinical component and a joint one. Its application
to ringing stripes demonstrates its superiority to unimodel and
bimodel approaches.

Future work will focus on accelerating the resolution of the
joint model. Furthermore, we will study a better representation
for the ECC which depends on the artifact features.
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