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Abstract—In conventional digital acquisition, a trade-off ex-
ists between allocating bits to capture a high dynamic range
(HDR) signal and achieving high digital resolution (HDres).
The Unlimited Sensing Framework (USF) overcomes this trade-
off by introducing modulo non-linearity before sampling and
encoding HDR signals as low dynamic range folded samples.
These samples are then decoded or unfolded using smoothness
or parametric signal priors. The question investigated in this
paper is whether we can simplify the reconstruction if we
assume that the signals are sparse in some transform domain or
dictionary. The key insight there is that even though the modulo
non-linearity disrupts the sparsity in the original dictionary
the output signal exhibits sparsity in a new dictionary derived
from the original. Capitalizing on this, we propose a strategy
that leverages sparse recovery techniques, such as Orthogonal
Matching Pursuit (OMP) and Basis Pursuit (BP), to directly
reconstruct sparse signals from modulo samples. In addition
to numerical simulations, hardware experiments with a modulo
ADC demonstrate the stability and robustness of our approach
in real-world scenarios. Our work thus opens up a new direction
of exploration, leveraging methods from the established field of
sparse approximation for the emerging topic of USF.

I. INTRODUCTION

One of the major breakthroughs in signal processing over
the past decade has been the effective harnessing of sparsity,
[1], [2]. Concretely, the realisation that signals exhibit sparsity
in particular transform domains or bases (e.g. wavelets [3],
discrete cosine transform) or general dictionaries (e.g. Gabor
frames [4]) has been widely exploited in various signal and
image processing applications. This insight has enabled ad-
vances in areas including image denoising [5], audio [4], and
seismic signal processing [6]. In addition to analytical dic-
tionaries (e.g. wavelets, Gabor, DCT), algorithms for learning
sparsifying dictionaries, [7]-[9], have also been developed,
further expanding the applicability of sparsity based methods.

While sparsity offers a powerful signal model, digital ac-
quisition of such signals often faces practical bottlenecks.
For example, high dynamic range (HDR) signals can be
clipped or saturated during digitization by analog-to-digital
converters (ADCs). Additionally, real-world signals must un-
dergo quantization [10], with the achievable digital resolution
constrained by the bit budget and technology standards [11].
These limitations restrict the performance of ADCs and with a
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fixed bit budget there is typically a trade-off: one can optimize
for either HDR capability or digital resolution, but not both
simultaneously. Consequently, regardless of how advanced
sparsity based methods are, their performance is ultimately
tied to the quality of the digital sensing process.

From the acquisition perspective, the Unlimited Sensing
Framework (USF) was recently introduced as a novel digital
sensing method [12]-[14]. Similar to how sparsity based meth-
ods leverage non-linearity in algorithms, the USF harnesses
non-linearity in the hardware. By applying modulo folding
before sampling, the USF enables simultaneous HDR recovery
while maintaining high digital resolution (HDRes). Real-world
hardware experiments in applications such as tomography [15]
and radars [16] have already demonstrated 10-12 dB improve-
ment in digital resolution. USF-enabled MIMO systems have
also made it possible to implement higher-order modulation
schemes, such as 1024 QAM [17], which was previously
challenging. In the recent work [18], hardware experiments
have demonstrated recovery of HDR signals with a 60-fold
increase in dynamic range.

Related Work. Since the USF relies on a co-design of hard-
ware and algorithms, a key challenge is developing recovery
methods [12]-[14] to efficiently and robustly [19] unfold the
modulo folding operation. To address this, there are several
reconstruction algorithms, focusing on various signal models,
including bandlimited [12]-[14], [20], [21], bandpass [22],
smooth [23], [24] and parametric [25], [26] or compressive
signals with random projections [27]-[29].

Motivation. Despite the algorithmic progress since the incep-
tion of the USF [12], signals that exhibit dictionary sparsity
(DS) have not yet been explored. This is likely due to (i) the
recency of the USF where much of the foundational work is
dedicated to Shannon-Nyquist like sampling strategy, (ii) the
real-world performance assessment of the USF via modulo
ADC hardware [14], and (iii) the non-triviality of inverting the
folding non-linearity. However, given the power and flexibility
of the sparse model, it is both relevant and timely to investigate
the recovery of such signals within the USF.

Contributions. Our main contribution lies in the insight that
the modulo representation itself is dictionary sparse. More
importantly, the folded samples of an ambient signal, which is
sparse in some dictionary, is then sparse in the concatenation
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Fig. 1. Acquisition and Recovery Pipeline.

of two distinct dictionaries — one the transformed original
dictionary ® and the other derived from the structure imposed
by the folding architecture. In summary, we leverage sparse
recovery techniques by associating the signal model and the
folding architecture after the transform with an appropriate
sparse model. We summarize our contributions as follows:

1) We propose a simple algorithm that uses well-known
sparse recovery techniques, such as Orthogonal Matching
Pursuit (OMP) and Basis Pursuit (BP). Our recovery method
demonstrates flexibility across different dictionary structures.
In this paper we achieve effective reconstruction of signals
which are sparse in a DCT and Gabor-type dictionary.

2) Beyond numerical experiments we validate our method on
hardware experiments in Section IV-B. These results demon-
strate the empirical robustness of our approach, as it effectively
handles quantization, non-idealities, and system noise, while
also paving the way for practical applications.

II. PROBLEM SETUP

After introducing the input signal model and the acquisition
pipeline that produces folded measurements, we provide a
clear and concise statement of the problem.

Sparse Signal Model. We say that a signal g € H where H
is a Hilbert space such as L?(R) or RY, is (approximately)
S-sparse in a dictionary (¢¢)een, where ¢pp € H and A # 0, if
there exists I C A with |I| = S and coefficients (s¢)ecr with,

g=> dusete where ey < lglln. (1)
lel
Setting s, = 0 for £ ¢ I, we also use the shorthand g =
®s + e. If g is a continuous time signal, which is sparse in a
finite continuous time dictionary, then its discretization g with
sampling period T, defined via

g[n| défg(noT) for ne L CZ,

is sparse in the discretized dictionary ® = (¢;,...,¢,,) and
we have g = ®s+ e. Most of the time we have either L = Z
or L=Fy¥7zn [-N/2+1,N/2] for N € 2Z, meaning
g € RY and & € RVXM,

Famous examples of dictionaries are wavelets, the Discrete
Cosine Transform (DCT) and Gabor frames, which sparsely

approximate music or natural images.

Unlimited Sensing Framework. Shannon’s sampling theorem
tells us that a bandlimited continuous-time signal, meaning

supp(g) € [-B,B], can be exactly recovered from its
discretization if L = Z and 27'B < 1, and approximately
if L = Fy and N large enough to capture most of the energy.
In USF, instead of sampling g directly, it is first folded via
modulo ADCs [14], [30]. For A < ||gllcc = sup,|g(?)]
the folding operator .# is implemented pointwise via the
memoryless non-linearity defined as

///A(T)Q)\(H;)\Jr;ﬂ ;) )

where [r] ey |7] and |[r| = sup{m € Z|m < r}. The
folded signal y = .#(g) is subsequently sampled

yln] < y(nT) = (M(9))(nT) = (@), (3)
as shown in Fig. 1. Note that sampling and folding commute.
However in practice, such folded samples may be distorted
with some noise 1 due to non-idealities [14], [30], quanti-
zation [13] and system noise [31]. We denote the distorted
measurements by y,, def y + 7. The task is to recover g from
y or y,,, which for a bandlimited signal g reduces to recovering
g and using classical sampling theory.
Thus, we will next investigate if adding sparsity to the mix can
lead to an efficient recovery scheme for g (thus g) from y, .

III. RECOVERING SPARSE SIGNALS

Let’s assume that we have a signal g, that is exactly sparse in
a finite dictionary and that there is no measurement noise. Our
first observation is that h = g—.#(g) is a step function with a
step for every folding action. This means that its discretization
h is piecewise constant and the finite differences Ah, where

Ah[n] = h[n] —hin—1] forn #0

(and (Ah)[0] = h[0] — h[N]), have a spike whenever two
subsequent samples differ by a fold. Further if g is smooth
then the number of folds should not be too high, meaning Ah
is sparse in the Dirac dictionary Ah = ®;s5, where ®5 = [y.
Since the finite difference operator A is linear we get that

Ay=A(g+h)=A(Ps+ h) = (AP)s + Psss

meaning Ay is sparse in the dictionary (A®, ®s) or rather
& = (A®D, ®;) with coefficients § = (s'D, st)* where D
ensures normalisation of the atoms Ag,. This means that
we can recover s and thus s as well as g = ®s and
g = Y, ¢eS¢ via sparse approximation of Ay in &. While
any sparse approximation algorithm could be used, we use
OMP, [32], and BP, [33], which have the advantage that we
do not need to prescribe the correct sparsity level but can use
an approximation error as stopping criterion. The proposed
recovery strategy is summarized in Algorithm 1.

Before testing our idea on both synthetic and simulated
hardware data, let us consider which requirements we can
expect for our strategy to be successful, [34]-[36].

First, for OMP and BP to have a good chance of recovering a
k-sparse § from Ay we need the coherence of & to be small,

def ~ 5
p= r;l;,g<|<¢j,¢k>| <1 4)
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Algorithm 1 Signal Recovery Algorithm

1: Input: Folded sampled signal y € RY, sampled dictio-
nary ® € RV*M and error threshold ¢
2: Apply A and normalize by its column norms: A®D !

3: Concatenate dictionaries:
b = [A®D !, B5] € RV*(M+N)
4: Recover 5§ using OMP or BP:
5. §=OMP(Ay,®,e) / §=BP(Ay,®,¢)
6: sp=25(1: M) and 5=D"1sp
7: Recover sampled signal: g = ®3
8: Output: s, g

Algorithm 2 Orthogonal Matching Pursuit (OMP)

1: Input: Sampled Signal y € R, sampled dictionary ® €
RN*M error threshold &
Initialize $=0,J =0 andr; =y
while [|ry]| > & - |[y]> do
j = argmax, | (¢, )
J+— JU{j}
Sy = ‘I’ij
ry=vy— ®Ps
end while
Output: s

R A ol

Algorithm 3 Basis Pursuit (BP)

1: Input: Sampled Signal y € RY, sampled dictionary ® €
RNXM error threshold e

2: Construct matrix: A = [®, —P|

3: Solve linear program: min,, > [[As; —y|| <€

4: Reconstruct signed coefficients:
§=s4(1:M)—sy(M+1:end)

5: Output: §

This means that on one hand we need,
max |A¢’j [n]|
in |Ag,l2

so the sampled atoms should not have big jumps, meaning the

continuous atoms should be smooth, and on the other that

i#k | Agjll2]| Ayl

so the sampled atoms should not disappear or coincide,
meaning the continuous atoms should not be too smooth or
similar.

Second, we also need 5 not to have too many non-zero entries.
While the non-zero entries of s or Ds are fixed, the ones of
ss depends on the number of folds meaning the size of A
compared to ||g||co-

<1, )

<1, 6)

IV. EXPERIMENTS

We first explore the limits of folding, subsampling and
recovery by Algorithm 1 by conducting experiments on S-
sparse synthetic signals. In addition we test the robustness of

the Algorithm 1 on real-world data, by recovering signals from
the modulo ADC, which are only approximately S-sparse in
a DCT and Gabor-type dictionary.

A. Synthetic Experiments.

We generate a Discrete Cosine Transformation (DCT) dic-
tionary and two Gabor-type dictionaries as follows:
The DCT atoms are constructed in RY with N = 1024 as
def [ 2 <7r(2n + 1)m)

Buln) [ cos (T

+ )

where we restrict m to be in {64,65...,575}. This is to avoid
both too smooth and not smooth enough atoms as discussed
in (5) and (6).

The two Gabor-type dictionaries are generated in RY*
with dimension N = 1080 and M € {675,945} in the follow-
ing way. We use a Gaussian window yy (t) = exp (—7t?/N)
which is then discretized to - y [] with sampling period 1 and
ne€Fy=2Z N [-N/2+1,N/2]. For k,{ € F we define
the time-shift operators with stride a = 24 and frequency-shift
operators with stride b € {18,24} via

of [n — ak | mod N]

Takg[n} g
4 gln] - exp(2mibl(n — 1)/N).

Myeg[n] =

This yields our Gabor-type atoms ¢y, o = real(Tyur Mpey )+
imag(7T . Mpey 5 ). Because of the Gaussian window vy we
do not have too smooth atoms, as discussed in (6), and because
a and b are large enough they are not too similar. However,
we want to avoid non-smooth atoms, as discussed in (5), and
therefore restrict ¢ to ¢ € {—10,—9,...,10} if b = 18 and
e {-7,-6,...,7}if b=24.

Set up: We next synthesize S-sparse signals mimicking our
sampled discretized time signals as linear combinations of .S
such atoms according to our signal model in (1), where we
chose the index set I with |I| = S uniformly at random
among all sets of size S and the non-zero coefficients i.i.d
Gaussian, i.e. s; ~ N(0,1). Each signal g = ®s is folded,
as in (2), leading to y = .#x(g). For DCT signals, we
vary the sparsity level S from 10 to 100 in steps of 10,
and for Gabor-type signals, from 4 to 40 in steps of 4. For
each sparsity level S we generate 1000 signals g and fold
them with A ranging from 0.3 to 0.48 for DCT signals and
from 0.36 to 0.54 for Gabor-type signals, both with a step
size of 0.02. We then run Algorithm 1 with error threshold
e = 0.01 and dictionary & = (A®D, ®5). We obtain 5,
reconstruct g = ®3, and calculate the relative reconstruction
error ||g — gll2/||g||2- Figure 2 provides an overview of the
recovery performance. For the DCT dictionary (first column)
and the Gabor-type dictionary with strides b = 18 and b = 24
(second and third column), the first row shows the average
total sparsity level ||s||o + ||ss||o of the folded signals for each
folding height A and sparsity level S. As expected, we can
see that the total sparsity level increases when the folding
height )\ decreases. In the second and third rows, we show for
each folding height A and sparsity level S the corresponding
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average error of Algorithm 1 using OMP and BP, respectively.
We can see that, consistent with the total sparsity of the folded
signals in the first row, the average error remains low when
the sparsity level is small and the folding height is large. We
observe a sharp transition from small to large error for the
DCT signals, while this transition is more gradual for the
Gabor-type signals. Moreover, the Gabor-type dictionary with
a larger stride (b = 24) performs better compared to the one
with smaller stride (b = 18). Both effects can be explained by
the larger coherence of the recovery dictionary used for Gabor-
type signals, which is 0.59 for the one with stride b = 24 and
0.77 for the one with stride b = 18, compared to 0.40 for
the DCT recovery dictionary. Due to the higher similarities
of atoms, there is a greater risk for OMP and BP to confuse
atoms, leading to higher recovery errors. The fourth and fifth
rows show the percentage of successfully recovered signals for
each folding height A and sparsity level S, where we declare
success if the error is below 0.05. We observe that DCT signals
are more resilient to folds than Gabor-type signals, which
can again be explained by the lower coherence. In particular,
Algorithm 1 successfully recovers folded DCT signals up to
a total sparsity level of 200, whereas for folded Gabor-type
signals, the limit is around 50. Finally, we observe that OMP
outperforms BP for DCT signals, while BP is more effective
for Gabor-type dictionaries. This can again be explained by
the larger coherence, to which BP is quite robust, while the
greedy algorithm OMP will start to pick wrong atoms that
once chosen cannot be removed.

B. Hardware Experiments.

The goal of our hardware experiment is to show stability of
our algorithm in the presence of quantization, non-idealities,
and system noise. We construct a 10-sparse signal in the DCT
and the Gabor-type dictionary as described in the last section,
but in higher dimensions. So for the DCT dictionary we now
set N = 2% and keep the same ¢,,. For the Gabor-type
dictionary we set N = 32400, ¢ = 720 and b € {18,24}.
We take all possible time-shifts and frequency-shifts with
e {-10,...,10} if b=18 and £ € {—7,...,7} if b = 24.
The generated signals serve as templates for a waveform
generator, that provides the corresponding continuous time
signals. In our setup, we observed that the waveform generator
introduces a small DC bias, meaning it adds a constant, that
we assumed to be known. The modulo ADC discretizes the
10-sparse signals g to dimension N = 1024 for DCT and
dimension N 1080 for Gabor and folds them, which
leads to y, = .#\(g) + 7. For reconstruction, we use the
downsampled dictionaries above with strides of 7" = 32 for
DCT and T' = 30 for Gabor. Algorithm 1 is then applied to
y,, using OMP with an error threshold ¢ = 0.01 to recover g.
After correcting for bias, we obtain a relative reconstruction
error of 0.03 for the DCT signal compared to the discretized
signal g. This is a remarkable result, considering that the DCT

The simulations underlying this figure and the figure itself can be repro-
duced using the code available at: https://github.com/Morris-Luca/Unlimited_
Sensing_with_Dictionary_Sparsity
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Fig. 2. For the DCT dictionary (first column) and the Gabor-type dictionaries
with stride b = 18 and b = 24 (second and third column) the rows show (top
to bottom): average total sparsity level of the folded signals, average relative
error using OMP and BP, percentage of signals with relative error above 0.05
using OMP and BP.!

signal underwent 285 folds and was folded up to three times in
amplitude, meaning ||g||oo > 5A. Similarly, for the Gabor-type
signal, which underwent 34 folds and was folded up to twice
in amplitude, Algorithm 1 using OMP and the Gabor-type
dictionary with stride b = 24 successfully recovered the signal
with a relative error of 0.03. For the second Gabor-type signal,
which underwent 28 folds and was also folded up to two times
in amplitude, Algorithm 1 using OMP and the Gabor-type
dictionary with stride b = 18 achieved a relative error of 0.05.
Figure 3 displays the discrete signal, the reconstructed signal
and the sensed signal of the DCT signal and Gabor-type signal
with frequency stride b = 18.

V. CONCLUSION & FUTURE WORK

In this work, we have shown that sparse recovery techniques
can successfully reconstruct signals despite the challenges
introduced by folding, making them a promising tool in
the setting of USF. Additionally, we demonstrate that our
approach to recovering folded signals performs well using out-
of-the-box recovery algorithms such as Orthogonal Matching
Pursuit (OMP) and Basis Pursuit (BP), even without any
modifications tailored to the folding structure. Motivated by
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Hardware experiment: DCT signal Gabor-type signal with b = 18
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Fig. 3. The left plot displays the 10-sparse DCT signal, while the right plot
shows the 10-sparse Gabor-type signal with frequency stride b = 18. Each
plot presents the ground truth signal (yellow), the folded signal from the
modulo ADC (blue), and the recovered signal (red).

A larger version of the image can be viewed at: https://github.com/
Morris-Luca/Unlimited_Sensing_with_Dictionary_Sparsity

this performance, our next goals are to refine the recovery
process to account for the folding structure and to incorporate
side constraints for the Dirac dictionary ®s, such as using
atoms only if their response is close to the spike height
of 2)\. Moreover, we want to exploit the symmetry of the
finite differences, which leads to an equal number of upward
and downward spikes, implying that the number of positive
coefficients in the Dirac dictionary must match the number of
negative coefficients. Finally, we aim to further analyze the
recovery dictionary: To avoid unintentionally favoring high-
frequency atoms — since they exhibit larger amplitudes after
applying finite differences — we currently normalize the atoms.
However, based on the insights from [37], we propose replac-
ing normalization with multiplication by a weight matrix. This
approach allows us to adapt to the given data and the fact that
some atoms, e.g. low frequency atoms, are used more often.
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