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Abstract—We propose a variable smoothing algorithm for
minimizing a nonsmooth and nonconvex cost function. The cost
function is the sum of a smooth function and a composition of
a difference-of-convex (DC) function with a smooth mapping.
At each step of our algorithm, we generate a smooth surrogate
function by using the Moreau envelope of each weakly convex
function in the DC function, and then perform the gradient
descent update of the surrogate function. Unlike many existing
algorithms for DC problems, the proposed algorithm does not
require any inner loop. We also present a convergence analysis
in terms of a DC critical point for the proposed algorithm as
well as its application to robust phase retrieval.

I. INTRODUCTION

In this paper, we consider the following nonsmooth and
nonconvex optimization problem.

Problem I.1 (DC composite type problem).

minimize
x∈Rd

F (x) := h(x) + (f − g)︸ ︷︷ ︸
φ

◦S(x), (1)

where

(a) h : Rd → R is differentiable and its gradient ∇h : Rd →
Rd is Lipschitz continuous, i.e., there exists L∇h > 0
such that ∥∇h(x)−∇h(y)∥ ≤ L∇h∥x−y∥ (x,y ∈ Rd);

(b) f : Rn → R and g : Rn → R are

(i) Lipschitz continuous (possibly not differentiable),
(ii) weakly-convex, i.e., there exist ηf , ηg > 0 such that

f +
ηf
2 ∥·∥

2 and g + ηg
2 ∥·∥

2 are convex
(We define η := max{ηf , ηg} for convenience),

(iii) prox-friendly, i.e, their proximity operators (see Defi-
nition II.4) are available as computable operators

(see Table I for various examples of f−g in applications);
(c) S : Rd → Rn is differentiable, and its Fréchet derivative

DS : Rd → Rn×d is Lipschitz continuous1;
(d) F is bounded below, i.e., infx∈Rd F (x) > −∞.

This work was supported partially by JSPS Grants-in-Aid (19H04134,
24K23885).

1Problem I.1 covers seemingly much more general case of the minimization
of h+ f̂ ◦S1− ĝ ◦S2, where f̂ : Rn1 → R and ĝ : Rn2 → R are Lipschitz
continuous, weakly convex and prox-friendly, and S1 : Rd → Rn1 and
S2 : Rd → Rn2 are continuously differentiable such that their Fréchet
derivative are Lipschitz continuous. This fact can be understood through a
simple translation of this minimization into Problem I.1 by introducing f :
Rn1+n2 → R : [zT

1 ,zT
2 ]T 7→ f̂(z1), g : Rn1+n2 → R : [zT

1 ,zT
2 ]T 7→

ĝ(z2), and S : Rd → Rn1+n2 : x 7→[S1(x)TS2(x)T ]T .

TABLE I: φ in application areas and their DC decomposition

name φ(z) = (f − g)(z) f(z) g(z)

ℓ1 norm
n∑
i=1

|[z]i|
n∑
i=1

|[z]i| 0

MCP [8]
n∑
i=1

r([z]i)
*1

n∑
i=1

r([z]i) 0

Capped ℓ1 [10]

n∑
i=1

min{|[z]i|, β}

(with β ∈ R++)

n∑
i=1

|[z]i|
n∑
i=1

max{|[z]i| –β, 0}

Trimmed ℓ1 [11]

n∑
i=K+1

|[z]↓i| *2

(with 0 ≤ K ≤ n− 1)

n∑
i=1

|[z]i|
K∑
i=1

|[z]↓i|

*1 r(t) :=

λ|t| −
t2

2β |t| ≤ βλ,

βλ2

2 otherwise
with λ, β ∈ R++.

*2 [z]↓i denotes the entry of z whose absolute value is the i-th largest.

The function f − g in (1) is called “Difference-of-convex
(DC) function”2 , and thus, we call Problem I.1 “DC composite
type problem”.

Problem I.1 appears mainly in sparsity-aware signal pro-
cessing applications, such as image restoration [1], trend filter-
ing [2], compressed sensing [3], and sparse logistic regression
[4]. In addition, Problem I.1 also arises in robust estimation
including robust phase retrieval [5], [6]. The DC function f−g
in (1) is employed, e.g, to induce sparsity of the target signal
translated by S in sparse signal processing, or to enhance
the robustness of the data fidelity to measurement outliers in
robust estimation. Such DC functions f−g include (i) convex
functions (e.g., ℓ1 norm [7, Exm.24.22]), (ii) weakly convex
functions (e.g., the minimax concave penalty (MCP) [8] and
the smoothly clipped absolute deviation (SCAD) [9]), and (iii)
DC functions that are not weakly convex (e.g., capped ℓ1 norm
[10], the trimmed ℓ1 norm [11] and its variant [12]), some of
which are summarized in Table I.

In particular, DC functions lacking weak convexity (referred
to as “inherently DC” functions in this paper), such as the
capped ℓ1 norm and the trimmed ℓ1 norm, have been at-
tracting great attention. Indeed, a model using the capped ℓ1
norm has been reported to effectively reduce the impact of
outliers in application of twin support vector machine [13].
Moreover, in robust principal component analysis, which aims
to decompose a matrix into a low rank matrix and a sparse

2Although f and g are weakly convex, f−g is actually DC function because
it can be expressed as the difference of convex functions f̃ := f+ η

2
∥·∥2 and

g̃ := g + η
2
∥·∥2. For this reason, one might think that we could just assume

f, g in Problem I.1 to be convex functions instead of weakly convex functions
in the first place. However, components of this naive DC decomposition f̃
and g̃ do not satisfy the assumption (b)(i) in Problem I.1, namely Lipschitz
continuity. Thus, we assume a weaker condition, i.e., weak convexity, than
convexity on f and g.
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matrix, a model using the capped ℓ1 norm in [14] outperforms
a model using ℓ1 norm because the capped ℓ1 norm avoids
over-penalizing a matrix that contains entries of large absolute
values, unlike the ℓ1 norm. On the other hand, the trimmed
ℓ1 norm has been utilized in terms of an exact penalty theory
for cardinality-constrained optimization problems [15], i.e.,

minimize
x∈Rd

h(x) s.t. ∥S(x)∥0 ≤ K, (2)

where ∥·∥0 counts the number of non-zero entries of a given
vector. More precisely, if the trimmed ℓ1 norm is used as
f − g, a global (resp. local) minimizer of Problem I.1 also
serves as a global (resp. local) minimizer of the cardinality-
constrained problem (2) under certain conditions [15]. Such an
exact penalty formulation via Problem I.1 seems to be more
tractable than the cardinality-constrained problem (2) from a
viewpoint of designing algorithms.

A commonly used existing approach to minimization of
DC functions is DC algorithm (DCA) (see, e.g, [16]). At
each iteration of DCA, a subtrahend convex function in a DC
function is replaced with an affine minorization by utilizing
its subgradient, and then minimizes the resulting surrogate
function as a subproblem.For Problem I.1, DC composite
algorithm (DCCA) [17], which is an extension of DCA, can be
employed. If an exact solution to the subproblem in DCCA is
available, then DCCA has a convergence guarantee in terms of
DC critical point (see Definition II.2). In practice, however,
DCCA requires infinite iterations of an inner loop so as to
find the exact solution of the subproblem3. The convergence
analysis of DCCA does not cover realistic cases where only
inexact solutions of the subproblem are available.

In this paper, we propose a variable smoothing algorithm
for Problem I.1 that does not require any inner loop for
the subproblem. Our algorithm (Algorithm 1) is designed
as a gradient descent update of a time-varying smoothed
surrogate function of F in (1). With the Moreau envelopes (see
Definition II.4) µf of f and µg of g, the proposed surrogate
function is given as h+(µkf−µkg)◦S, where (µk)

∞
k=1 ⊂ R is

a monotonically decreasing sequence of convergence to zero.
We also present an asymptotic convergence analysis of the
proposed algorithm in the sense of a DC critical point (see
Theorem III.6 and Remark III.7). To verify effectiveness of the
proposed model (i.e, Problem I.1) and the proposed algorithm,
we conduct numerical experiments in a scenario of the robust
phase retrieval (e.g., [5], [6]) with its new optimization model.

Related works. Our algorithm serves as an extension of
algorithms [20], [21], [22] proposed for Problem I.1 in a
special case where g ≡ 0 (more precisely, S is linear in [20]).
The existing algorithms in [20], [21], [22] can be applied only
to optimization problems involving weakly convex functions,
while the proposed algorithm can cover even inherently DC
functions.

Notation. N, R and R++ denote respectively the sets of
all positive integers, all real numbers and all positive real

3For a special case of Problem I.1 where S = Id, a variant of DCA
introduced in [18] does not require any inner loop for the subproblem because
its exact solution can be obtained by using the proximity operator of f .
Moreover, another DCA-type algorithm proposed by [19] has a convergence
guarantee even though an inexact solution of the subproblem is used, where
such an inexact solution can be obtained in finite steps.

number. ∥·∥ and ⟨·, ·⟩ are respectively the Euclidean norm
and the standard inner product. For v ∈ Rn, [v]i ∈ R
stands for the i-th entry. We use Id to denote the identity
mapping. For Euclidean spaces X ,Y and a continuously
differentiable mapping J : X → Y , its Fréchet derivative
at x ∈ X is the linear operator DJ(x) : X → Y such that
limX\{0}∋h→0

J(x+h)−J(x)−DJ(x)[h]
∥h∥ = 0. In particular with

Y = R, ∇J : X → X is called the gradient of J if ∇J(x) ∈
X at x ∈ X satisfies DJ(x)[v] = ⟨∇J(x),v⟩ (v ∈ X ).

II. PRELIMINARY

As an extension of the subdifferential of convex functions,
we use the following subdifferential of nonconvex functions.
(see, e.g., a recent survey [23] for readers who are unfamiliar
with nonsmooth analysis).

Definition II.1 (Regular subdifferential [24, Def. 8.3]). For
a function ϕ : Rd → R, the regular subdifferential of ϕ at
x̄ ∈ Rd, denoted as ∂ϕ(x̄) ⊂ Rd, is the set of all vectors
v ∈ Rn such that

lim
δ↘0

inf
0<∥x−x̄∥<δ

ϕ(x)− ϕ(x̄)− ⟨v,x− x̄⟩
∥x− x̄∥

≥ 0.

If ϕ is convex, this regular subdifferential is equivalent to
the convex subdifferential [24, Proposition 8.12]. Furthermore,
if ϕ is Fréchet differentiable at x̄, ∂ϕ(x̄) = {∇ϕ(x̄)} holds
[24, Exercise 8.8(a)].

Unfortunately, finding a global minimizer of Problem I.1 is
not realistic due to the severe nonconvexity of F . Instead, in
this paper, we focus on finding a DC critical point defined,
with the regular subdifferentials, as follows.

Definition II.2 (DC critical point for Problem I.1 [17]). A
point x⋆ ∈ Rd is said to be a DC critical point for Problem I.1
if

∂(h+ f ◦S)(x⋆)− ∂(g ◦S)(x⋆) ∋ 0. (3)

Lemma II.3 (Relationship between local minimizer and DC
critical point). Let x⋆ ∈ Rd be a local minimizer of F in
Problem I.1. Then, x⋆ is a DC critical point for Problem I.1.

From Lemma II.3, being a DC critical point is a necessary
condition for being a local minimizer. Moreover, finding such
a DC critical point has been used as an acceptable goal in
many DC optimization literature [16], [17], [18], [19], [25].

The Moreau envelope plays an important role in this paper
for designing the proposed algorithm.

Definition II.4 (Moreau envelope, proximity operator [20]).
Let ψ : Rn → R be an ηψ-weakly convex function with ηψ >
0. Its Moreau envelope and proximity operator at z̄ ∈ Rn with
µ ∈ (0, η−1

ψ ) are respectively defined as

µψ(z̄) := min
z∈Rn

{
ψ(z) +

1

2µ
∥z − z̄∥2

}
,

proxµψ(z̄) := argmin
z∈Rn

{
ψ(z) +

1

2µ
∥z − z̄∥2

}
,

where proxµψ is single-valued due to the strong convexity of
ψ + (2µ)−1∥· − z̄∥2.

The Moreau envelope µψ serves as a smoothed surrogate
function of ψ because of the next properties.
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Algorithm 1 Variable smoothing algorithm for DC composite
type problem (Problem I.1)

Input: x1 ∈ Rd, (µk)∞k=1 ⊂ (0, (2η)−1] enjoying (6).
1: for k = 1, 2, 3, . . . do
2: Set Fk := F ⟨µk⟩ = h+ (µkf − µkg) ◦S
3: Obtain γk by Algorithm 2
4: xk+1 ← xk − γk∇Fk(xk)
5: end for

Fact II.5 (Properties of Moreau envelope). Let ψ : Rn →
R be an ηψ-weakly convex function with ηψ > 0. For µ ∈
(0, η−1

ψ ), the following hold.

(a) [24, Theorem 1.25] (z ∈ Rn) limµ↘0
µψ(z) = ψ(z).

(b) [26, Collorary 3.4] µψ is continuously differentiable with
(z ∈ Rn) ∇µψ(z) = µ−1

(
z − proxµψ(z)

)
.

(c) [26, Collorary 3.4] ∇µψ is Lipschitz continuous with
L∇µψ := max{µ−1,

ηψ
1−ηψµ}.

Note that for f and g in Problem I.1, we can compute ∇µf
and ∇µg in closed forms because these functions are assumed
to be prox-friendly (see the assumption (b)(iii) of Problem I.1).

III. VARIABLE SMOOTHING ALGORITHM FOR
DC COMPOSITE PROBLEM

A. Design of Smooth Surrogate Function

In our algorithm, we use the following function as a smooth
surrogate function of F in place of the direct utilization of the
nonsmooth function F .

Definition III.1 (Surrogate function). Consider Problem I.1.
For µ ∈ (0, η−1), we define a surrogate function of the cost
function F in Problem I.1 as

F ⟨µ⟩ := h+ (µf − µg) ◦S. (4)

By Fact II.5(b), F ⟨µ⟩ is also continuously differentiable.
The next theorem suggests how to find a DC critical point

in (3) using the surrogate function F ⟨µ⟩.

Theorem III.2. Consider Problem I.1. Suppose that a positive
sequence (µk)

∞
k=1 ⊂ (0, η−1) converges to 0. For the function

sequence Fk := F ⟨µk⟩ (k ∈ N) with (4) and any convergent
sequence (xk)

∞
k=1 ⊂ Rd → ∃x̄ ∈ Rd, we have

dist(0, ∂(h+ f ◦S)(x̄)−∂(g ◦S)(x̄)) ≤ lim inf
k→∞

∥∇Fk(xk)∥,
(5)

where dist(v, S) := infw∈S∥v −w∥ for a point v ∈ Rd and
a set S ⊂ Rd.

Theorem III.2 implies that x̄ is a DC critical point in the
sense of (3) if the right hand side of (5) is zero. Hence, our
goal of finding a DC critical point of Problem I.1 is reduced to
designing an algorithm to generate a point sequence (xk)

∞
k=1

such that lim infk→∞∥∇Fk(xk)∥ = 0.

B. Proposed Algorithm and Its Convergence Analysis

We propose Algorithm 1 based on the gradient descent
method of the smoothed surrogate function Fk := F ⟨µk⟩.

Algorithm 2 Backtracking algorithm to find γk
Input: γinitial > 0, ρ ∈ (0, 1), c ∈ (0, 1)

1: γk ← γinitial
2: while Fk(xk − γk∇Fk(xk)) > Fk(xk)− cγk∥∇Fk(xk)∥2 do
3: γk ← ργk
4: end while

Output: γk

We design (µk)
∞
k=1 ⊂ (0, (2η)−1] to satisfy the following

condition (introduced in [22]) so as to establish a convergence
analysis of Algorithm 1:{

(i) limk→∞ µk = 0, (ii)
∑∞
k=1 µk =∞,

(iii) (∃M ≥ 1,∀k ∈ N) 1 ≤ µk/µk+1 ≤M.
(6)

For example, µk := (2η)−1k−
1
α with α ≥ 1 enjoys the

condition (6) (α = 3 is reported to be an appropriate value for
a reasonable convergence rate of a special case of Algorithm 1
with g ≡ 0 [20], [22]).

To obtain a stepsize γk in line 3 of Algorithm 1, we
employ the so-called backtracking algorithm in Algorithm 2
which has been utilized as a standard stepsize selection for
smooth optimization (see, e.g., [27]). The finite termination of
Algorithm 2 is guaranteed under the following assumption.

Assumption III.3 (Decent assumption). Consider the surro-
gate function F ⟨µ⟩ in (4) with µ ∈ (0, (2η)−1]. Assume that
for any x,y ∈ Rd,

F ⟨µ⟩(y) ≤ F ⟨µ⟩(x)+⟨∇F ⟨µ⟩(x),y−x⟩+ κµ
2
∥y−x∥2, (7)

where κµ = ϖ1 +
ϖ2

µ with some ϖ1, ϖ2 ∈ R++.

Remark III.4 (Sufficient conditions of Assumption III.3). In
analogy with [21, Lemma 3.2], if S is Lipschitz continuous,
then ∇F ⟨µ⟩ turns out to be Lipschitz continuous with a
Lipschitz constant

L∇F ⟨µ⟩ = L∇h + LDS(Lf + Lg) +
2L2

S

µ
,

where each LΘ denotes a Lipschitz constant of a mapping Θ.
Because κµ = L∇F ⟨µ⟩ enjoys (7) [28, Lemma 5.7], Assump-
tion III.3 is achieved in this case. On the other hand, we also
will present, in Section IV, an example where Assumption
III.3 is satisfied without the Lipchitz continuity of S (see
Proposition IV.2).

Here, in order to show lim infk→∞∥∇Fk(xk)∥ = 0 with
(xk)

∞
k=1 generated by Algorithm 1, we present the fol-

lowing lemma to see a behavior of the gradient sequence
(∇Fk(xk))∞k=1.

Lemma III.5. Consider Problem I.1. Choose arbitrarily a
sequence (µk)

∞
k=1 ⊂ (0, (2η)−1] satisfying (6), an initial

point x1 ∈ Rd, and inputs of Algorithm 2 (γinitial, ρ, c) ∈
R++ × (0, 1)× (0, 1). Under Assumption III.3, the following
inequality holds for the function sequence Fk and the point
sequence (xk)

∞
k=1 produced by Algorithm 1:

(k, k̄ ∈ N s.t. k ≤ k̄) min
k≤k≤k̄

∥∇Fk(xk)∥ ≤
√

C∑k̄
k=k µk

,
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where C > 0 is a constant.

By noting that
∑∞
k=1 µk = ∞ from the condition (ii) in

(6), we obtain the next convergence theorem.

Theorem III.6. Under the setting of Lemma III.5, we have

lim inf
k→∞

∥∇Fk(xk)∥ = 0.

Remark III.7 (Interpretation of Theorem III.6). Theorem III.6
means that we can choose a subsequence (xm(l))

∞
l=1 such

that liml→∞∥∇Fm(l)(xm(l))∥ = 0, where m : N → N is
monotonically increasing. Every cluster point of (xm(l))

∞
l=1

is guaranteed to be a DC critical point of Problem 1.1 by
applying Theorem III.2.

IV. APPLICATION TO ROBUST PHASE RETRIEVAL

A. Optimization model in robust phase retrieval

To demonstrate the effectiveness of the proposed model
(Problem I.1) and Algorithm 1, we carried out numerical
experiments in a scenario of the phase retrieval. The phase
retrieval is widely used, e.g., for crystallography [29], optical
imaging [30], and astronomy [31]. The phase retrieval is a
problem of estimating an original signal x⋆ or −x⋆ ∈ Rd
from the magnitude measurement

b⋆ := (Ax⋆)⊙ (Ax⋆) :=
[
⟨a1,x

⋆⟩2, ⟨a2,x
⋆⟩2, ..., ⟨an,x⋆⟩2

]T
where A = [aT1 ,a

T
2 ...,a

T
n ]
T ∈ Rn×d, and ⊙ means the

element-wise product. While this b⋆ is clean measurement, a
measurement in real-world applications may be corrupted by
a noise. In particular, [5] considers the measurements b ∈ Rn
with outliers as:

[b]i :=

{
⟨ai,x⋆⟩2 i ∈ Iin

ξi i ∈ Iout

where Iin, Iout ⊂ {1, 2, ..., n} denote disjoint index sets of
inliers and outliers such that Iin ∪ Iout = {1, 2, . . . , n}, and
ξi > 0 is a random noise.

In order to circumvent performance degradation caused by
outliers, a robust phase retrieval [5] has been formulated as

minimize
x∈Rd

∥(Ax)⊙ (Ax)− b∥1 (8)

with the ℓ1 norm ∥·∥1 : Rn → R, z 7→
∑n
i=1 |[z]i|.

Although good estimation results have been reported by
solving (8) with Proximal linear algorithm [5] and Inexact
proximal linear algorithm [6], it is questionable whether the
ℓ1 norm in (8) can adequately suppress the effects of the
outliers. To explain this, we rewrite the cost function in (8)
as

∑
i∈Iin

∣∣⟨ai,x⟩2 − ⟨ai,x⋆⟩2∣∣ + ∑
i∈Iout

∣∣⟨ai,x⟩2 − ξi∣∣. If
the cardinality #Iout and each ξi are large, then the second
summation also becomes large even if x is close to x⋆ or
−x⋆. Such a situation may lead to performance degradation.

To resolve this issue, we propose the following reformula-
tion of the robust phase retrieval.

Problem IV.1 (Proposed model for robust phase retrieval). For
given A ∈ Rn×d and b ∈ Rn,

minimize
x∈Rd

F (x) := φ((Ax)⊙ (Ax)− b), (9)

where φ is chosen from Table I in Section I.
(Note: this problem is a special case of Problem I.1, where
h ≡ 0, f − g = φ, and S : x 7→ (Ax)⊙ (Ax)− b.)

The proposed model (9) with nonconvex φ such as MCP [8],
the capped ℓ1 norm [10], and the trimmed ℓ1 norm [11] seems
to be more robust for the large outliers than the existing model
(8). Indeed, the function for each entry in MCP and the capped
ℓ1 does not exceed a certain tunable constant value even if its
entry has a large absolute value, while ℓ1 norm does not have
such desirable property. Alternatively, a large entry tends to be
excluded from the summation in the trimmed ℓ1 norm because
the K largest absolute values are ignored therein. Therefore,
these nonconvex φ are expected to remedy over-penalization
in the model (8).

Algorithm 1 can be employed for Problem IV.1 since it is
the special case of Problem I.1. Furthermore, the proposed
convergence analysis in Theorem III.6 can be applied to
Problem IV.1 because Assumption III.3 is achieved as shown
in the following proposition. To the best of the authors’
knowledge, Algorithm 1 is the first inner-loop-free algorithm
applicable to Problem IV.1 with nonconvex φ.

Proposition IV.2. For Problem IV.1 with φ chosen from Table
1, F ⟨µ⟩ in (4) with µ ∈ (0, (2η)−1] satisfies Assumption III.3.

B. Numerical experiments

In order to evaluate estimation performance of the robust
phase retrieval via the proposed model (9), we applied Algo-
rithm 1 to the model (9) using ℓ1 norm, MCP, the capped ℓ1
norm, and the trimmed ℓ1 norm as φ (see Table I in Section I).
Note that (9) with ℓ1 norm is the same as the existing model
(8), e.g., in [5], [6].

Our experimental setup inspired by [6] is as follows. We
drew each entry of A ∈ R200×50 from the normal distribution
N (0, 1). Each entry of the original signal x⋆ ∈ R50 was
chosen from 1 or -1 with a probability of 0.5 respectively.
The number of outliers Iout was 10, that was 5% of all entries
of b ∈ R200, and the position of outliers was randomly chosen.
The value of each outliers ξi was given by

ξi = Ωtan
(π
2
ui

)
(≥ 0), (10)

where ui was drawn from the uniform distribution of [0, 1],
and Ω > 0 was used to control the magnitude of ξi. We
used the parameter (λ, β) = (1, 2000) and (2, 500) for
MCP, β = 1000 for the capped ℓ1 norm4, and K = 5 (=
#Iout) and 10 for the trimmed ℓ1 norm. In Algorithm 1,
we employed x1 ∼ N (0, I50) for a random initial point,
µk = k−

1
3 (k ∈ N) for parameters of the Moreau envelope5,

and (γinitial, ρ, c) = (1, 0.8, 0.0001) for inputs of Algorithm 2.
We stopped Algorithm 1 when ∥∇Fk(xk)∥ < 0.001 held
or the iteration k reached to 10000. For each φ in Table I
and each Ω ∈ {100, 1000, 2000, 5000, 10000} in (10), we per-
formed 50 trials of estimation with the model (9). We judged

4The functions for each entry in MCP and the capped ℓ1 norm is constant
τ when an input is far from the origin (see Table I in Section I). We set
parameters of MCP and the capped ℓ1 norm so that τ = 1000.

5Since (2η)−1 ≥ 1 holds for f and g with parameters used in this
experiment, we have (µk)

∞
k=1 ⊂ (0, (2η)−1], and (µk)

∞
k=1 also satisfies

(6).
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TABLE II: Success rate [%]

Existing Proposed

Ω ℓ1
MCP

(λ = 1)
MCP

(λ = 2) Capped ℓ1
Trimmed ℓ1

(K = 5)
Trimmed ℓ1
(K = 10)

10 90 86 88 92 66 54
1000 60 80 78 70 78 72
3000 56 84 80 84 82 74
5000 54 80 82 86 84 78
10000 54 80 82 86 88 78

TABLE III: Averaged time [sec]

Existing Proposed

Ω ℓ1
MCP

(λ = 1)
MCP

(λ = 2)
Capped ℓ1

Trimmed ℓ1
(K = 5)

Trimmed ℓ1
(K = 10)

10 2.50 (2.50) 3.20 (3.22) 3.30 (3.32) 3.30 (3.31) 5.74 (0.69) 8.26 (1.52)
1000 2.55 (2.57) 3.20 (3.22) 3.26 (3.26) 3.32 (3.35) 3.74 (0.55) 4.95 (0.71)
3000 2.47 (2.50) 3.23 (3.25) 3.22 (3.23) 2.83 (2.75) 3.62 (0.76) 4.48 (0.52)
5000 2.55 (2.61) 3.11 (3.12) 3.16 (3.17) 2.36 (2.21) 3.12 (0.76) 3.61 (0.46)
10000 2.49 (2.55) 3.13 (3.14) 3.08 (3.08) 1.65 (1.39) 2.50 (0.75) 3.74 (0.48)

The values out of and in the parentheses are the averaged time taken for all estimations
and only for successful estimations, respectively.

that an estimation succeeds if the relative error, defined as
min{∥x⋆ − x⋄∥, ∥x⋆ + x⋄∥}/∥x⋆∥, achieves a smaller value
than 10−3, where x⋄ is the final estimate of Algorithm 1. As in
[6], we used an estimation performance criterion called “suc-
cess rate” that is the percentage of the successful estimation
out of 50 estimations.

Table II shows the success rates for each φ and each Ω.
From Table II, the model (9) with nonconvex functions, i.e.,
MCP, the capped ℓ1 norm, and the trimmed ℓ1 norm, keep
high success rates even with large outliers while the model
(9) with the ℓ1 norm does not. In particular, the inherently DC
functions, the capped ℓ1 norm and the trimmed ℓ1 norm with
K = 5, have higher success rates than others when outliers
are large. (Note that the result of the trimmed ℓ1 with K = 5
is based on the utilization of the number of outliers.) Table III
demonstrates the averaged CPU time for Algorithm 1 to be
terminated. Algorithm 1 for the model (9) achieves the fastest
average convergence speed (i) with the capped ℓ1 among all
estimations for huge Ω ∈ {5000, 10000}, and (ii) with the
trimmed ℓ1 among successful estimations for all Ω. As above,
the proposed model using inherently DC functions φ have
better results in both estimation performance and speed than
the existing model using ℓ1 norm.

V. CONCLUSION

We presented an inner-loop-free variable smoothing algo-
rithm for nonsmooth DC composite type problems with its
convergence analysis. The proposed algorithm was designed
to find a DC critical point by generating the sequence of
points at which the gradient of the smooth surrogate function
approaches zero. The numerical experiments in a scenario
of robust phase retrieval demonstrated the effectiveness of
the proposed optimization model (9) using inherently DC
functions.
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