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Abstract—The multi-reference alignment (MRA) problem
involves reconstructing a signal from multiple noisy observations,
each transformed by a random group element. In this paper, we
focus on the group SO(2) of in-plane rotations and propose two
computationally efficient algorithms with theoretical guarantees
for accurate signal recovery under a non-uniform distribution
over the group. The first algorithm exploits the spectral properties
of the second moment of the data, while the second utilizes the
frequency marching principle. Both algorithms achieve the optimal
estimation rate in high-noise regimes, marking a significant
advancement in the development of computationally efficient
and statistically optimal methods for estimation problems over
groups.

Index Terms—Multi-reference alignment, spectral algorithm,
frequency marching, method of moments

I. INTRODUCTION

Let G be the group of 2-D rotations, SO(2), acting on a
finite-dimensional vector space V. We aim to recover a signal
z € V from n observations yi,...,y, of the form:
i=1,... L1

yZ:gz-T—’_E?: y 1,

where - denotes the group action, g; € G are unknown random
group elements, and ¢; is a noise term. We assume that the
group elements are drawn from a nonuniform distribution over
SO(2). This paper studies the action of the group SO(2) on
two vector spaces: bandlimited 1-D signals and bandlimited
2-D images, as detailed in Sections II and III. We also assume
that &; N (0,0%1) over the vector of coefficients in the
appropriate basis of V' (as detailed later).

The studied model is a special case of the multi-reference
alignment (MRA) problem, in which SO(2) is replaced by other
compact groups acting on finite-dimensional vector spaces, as
introduced in [2], [3], [4], [5]. The primary motivation for
studying the MRA model is the transformative technology of
single-particle cryo-electron microscopy (cryo-EM) to elucidate
the spatial structure of biological molecules [6], [7], [8]. Since
the observations are invariant under an intrinsic group of
symmetries, it is impossible to distinguish x from g - x for any
fixed g € G. Thus, the goal is to estimate the G-orbit of the
signal: {g-z | g € G}.
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To estimate the signal, we propose a two-stage framework
based on the classical method of moments. First, we approx-
imate the first two population moments using the empirical
moments of the observations. This approximation is accurate
if the number of observations is sufficiently large n > o.
Next, we aim to determine the parameters that represent
the signal based on the estimated moments. Previous works
have demonstrated that in the high-noise regime, the sample
complexity of the MRA problem is governed by the lowest-
order moment that uniquely determines the signal’s orbit [9],
[10]. Since recovery from the first moment is impossible,
recovery from the second moment implies that the sample
complexity of the model in (I.1) is proportional to o*.

The main computational challenge in the method of moments
is estimating the signal from the moments. To address this, we
develop two methods. The first method employs a frequency
marching approach, extending a similar technique used in
discrete settings [3]. We prove that exact recovery is possible
from the first two population moments, which implies the
sample complexity of the model. This proof is constructive,
as it introduces an explicit computationally efficient algorithm.
The second method utilizes the spectral decomposition of an
approximation of the second-moment matrix. This algorithm
generalizes the spectral method used in discrete 1-D MRA [9],
and we refer to it as the spectral algorithm. This algorithm
approximates the solution based on the spectral properties of
the second moment matrix; see Theorem I1.4. The algorithms
are detailed in Section II and Section III for the 1-D and 2-D
cases, respectively. We support these findings with numerical
experiments in Section IV. Due to space constraints, the proofs
for the claims presented in this paper can be found in the full
version [1].

Contribution. The uniqueness of recovering a signal from
its MRA moments has been extensively studied in recent
years (see, for example, [4], [5], [10]). While most of these
works focus on uniform distributions over the group, non-
uniform distributions have also been explored [9], [11], [12].
However, computationally efficient provable algorithms have
been developed only for the simplest case, where the group of
circular shifts acts on 1-D discrete signals [3], [9], [10]. This
paper introduces the first provable algorithms for a continuous
group SO(2) that acts on signals and images, marking a
significant milestone in the development of provable algorithms
for more complex MRA models. In Section V, we discuss the
potential implications for cryo-EM. This is particularly crucial
since existing algorithms in cryo-EM rely on heuristics without
robust validation measures.
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II. 1-D MRA OVER SO(2)

We first consider a vector space V' of 1-D bandlimited signals.
Let z(0) = Zf:_ 5 2[k]e**, be a B-band-limited signal on
the circle § € [0,27), where « = /—1. Here, & € C2?B+!
denotes the Fourier coefficients of z. In Fourier space, the
observations are given by

7n7

where g[k] is the k-th Fourier coefficient of the i-th observation,
g - 2[k] = 2[k]e~**®, where ¢ is the angle associated with
g, £:[0] ~ N(0,0?), and for k > O the real and imaginary
part of £;[k] are i.i.d. normal variables with zero mean and
variance o2/2 that obey the conjugation rule &;[k] = & [—k].
As we show next, the high frequencies of the distribution are
annihilated by the moments, and thus, we assume, without loss
of generality, that the Fourier coefficients of the distribution
of group elements, p, is 2B-bandlimited.
Recall that the first two population moments are given by

M; =E[g;] € CB+Y,

The population moments can be estimated in practice by the
empirical moments of the observations by averaging over the
observable moments

1 n
Mg 2 = §
1,est n pat Y

Lo IL3)
A A Ak

M2,est - n ; YiY; -

The population moments can be accurately estimated when
n/o* — oco. This is our assumption for the rest of the paper
unless stated otherwise.

Let T € CEB+DX(2B+1) pe 3 Toeplitz matrix with elements
defined by T),[k1, ko] £ plky — ko], D; is the diagonal matrix
of 2, I is the identity matrix, and ® represents the Hadamard
product. The moments are given explicitly in the following
lemma.

Lemma IL.1. Consider the model (1.1). Then,

M1 =2ﬁf®ﬁ7

My =21D;T,Dj + 0*lap1. (IL4)

A. Frequency Marching Algorithm

We begin by studying a frequency marching algorithm that
successively recovers the high frequencies based on the low
frequencies. In particular, we show that given the population
moments M; and Mo, this algorithm recovers the signal and the
distribution p uniquely. The underlying idea of the algorithm
is to reformulate My as a function solely of p, using the
information of the first moment M;. This allows iteratively
recovering p. Then, £ is recovered from M; and p. By saying
that & is non-vanishing, we mean that all the Fourier coefficients
are non-zero.

Algorithm 1 A frequency marching algorithm for the 1-D
model
Input: M e, Mo s, and o
Output: Zeg, Pest
1) My ey < Mo ey — 02lap+1 (debiasing)
2) S« 21Dy Moy D;;im

3) ﬁesl[o] — %

4) pest[l] < /Y 2m5[1,1]
5) f0r2§k§Bd(?]
~ Acsl 1
0) pest[K] < sprtiipr
7) end for
8) for B+1<k<2Bdo

9) ﬁesl[k] — S[k - Bv 7B]/5est[k' - B]féest[B]

10) end for

11) for 2B <k < —1do
12) pest[k] = piu[—K]

13) end for

14) Fou o o

Proposition IL.2. Assume that & and p are non-vanishing and
M ese = My, and My ey = My, Then, Algorithm 1 recovers &
and p exactly, up to a global rotation.

Algorithm 1 relies on a single diagonal of M>, ignoring
others that carry valuable information. Utilizing additional
diagonals could improve robustness and performance. In
Section IV, we discuss the estimation error caused by using
non-exact moments.

B. Spectral Algorithm

The second algorithm uses the spectral properties of My
and the close relation between circulant and Toeplitz matrices.
Let P; = |#|> be the power spectrum of #, which is the
diagonal of the second-moment matrix. The algorithm begins
by conjugating (normalizing) the second-moment matrix by
D% and then extracting an isolated eigenvector that contains
an aﬁproximation of the Fourier phases of the signal. This
eigenvector is then combined with its Fourier magnitudes.
Note that the algorithm presented here is for a continuous case,
generalizing a similar approach in an earlier discrete case [9].

The crux of the spectral algorithm is the similarity between
Toeplitz and circulant matrices and the projection of a given
Hermitian Toeplitz matrix into the space of circulant matrices,
which are diagonalized by the DFT matrix. Consider the
problem:

argmin || T, — C, |7, (IL5)
veC2B+1
where v is a vector defining the circulant matrix C,,. This
problem enjoys a closed-form solution [13], given by
_kp [—(QB +1- k)} + (2B + 1 — k)plk]

vopi[k] = 2B+ 1 7
and the distance between T}, and the associated circulant matrix
(the error) is given by

Su(p) = 32, |olK] — pl- (2B +1 - b))|* (L)
(IL.7)

(IL6)
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Algorithm 2 A Spectral Algorithm for the 1-D model
Input: M; e, Mo s, and o
Output: Zeg, Pest
1) My ey < Mo ey — 02Iap1 (debiasing)
2) P; « diag(Mseq)
3) MQ «~ D 1 MQestD 1
4) Find the elgenvalue decompos1t10n of Mj: eigenvalues
Ao > A1 > ... > Agp with corresponding eigenvectors
Vo, V1y...,0U2B.
5) K < argmaxgcj<op Ming £k Agr
6) Test <+ V2B + 1,
7) ﬂ — eL(KMl,csl[O]_‘Cicst[O])
8) Test < Pest
9) Zest \/7 © Tegt
10) e gt

271'm

(conjugating)

— el

The following theorem shows that given the ideal assumption
of T}, being a circulant matrix, Algorithm 2 recovers the signal
and the first B Fourier coefficients of p.

Proposition IL.3. Assume that Sp(p) = 0, & is non-vanishing
and that U,y has an isolated entry. In addition, assume that
My et = My, Mo e = Mo. Then, Algorithm 2 recovers & and
the first B Fourier coefficients of p exactly, up to a global
rotation.

In practice, we do not expect T}, to be a circulant matrix,
implying Sp(p) > 0. Hence, in practice, the spectral algorithm
only approximates the solution, and the estimation error
depends on Sp(p). This is captured by the following result,
based on the Davis-Kahan Theorem [14].

Theorem IL4. Consider N[ > AT > > Mg and
XS > A > ... > My to be the eigenvalues of T, and
Cy,,» respectively. We denote Prax := maxo<p<p Pz[k] and
¢ — /\ - A ) Assume

the following conditions hold:

0, = max <minj7,g,.C jT

1) & is non-vanishing.

2) & of Step 5 of Algorithm 2 has both XL and NS with an
eigenspace of dimension 1.

3) The estimate calculated in Step 8 of Algorithm 2 satisfies
~;t[¢) 2«1 @5)] > 0.

4) Sg(p ) < 52

Then, there exists 0 < [ < 2B, such that
X 2 S5(0)
‘xm D e O <228+ 1) P |1 -\ /1- B2
(I1.8)

where @, [k] = e=tF.

III. 2-D MRA OVER SO(2)

We now extend the algorithms from 1-D signals to 2-D
images. We assume that V' is the space of bandlimited images
in the sense that they can be presented with finitely many

Fourier-Bessel coefficients [15]. Namely, the sought image is
of the form

z(0,7) =Xk ger 2k qle’*?J, (r), 6 €]0,2n),

where uy ,(0,7) = e*.J, (r) is the general Fourier-Bessel
function, with J,(r) being the cylindrical Bessel function of
order ¢q. The set {uy 4(0,7)}rez,gez-, Spans all the “nice
enough” functions over the unit disc. The images are ban-
dlimited in the sense that there exists an angular bandwidth
B and a maximal radial frequency () such that the set
I={(k,q): —B<k<B,0<q<Q—1} is finite. We
denote the total number of coefficients by |I|. It can be readily

seen that
>

x(e 2 T) =
(k,q)el

Thus, in Fourier-Bessel space, the observations are given by

where gk, g] is the (k, ¢)-th Fourier-Bessel coefficient of the
i-th observation, g - Z[k,q] = [k, qle”**®, where ¢ is the
angle associated with g, £;[0,q] ~ N(0,0?), and for k > 0
the real and imaginary part of &;[k, ¢] are i.i.d. normal variables
with zero mean and variance 02/2 that obey the conjugation
[k, q] = &f[—k, ¢]. In this sequel, we order the Fourier-Bessel
coefficients in lexicographical order and think of them as a

column vector with || complex entries.
The following lemma gives the first two moments.

Lemma III.1. Consider the 2-D MRA problem (111.2). The
first two moments are given by

My =272 O R, (IL.3)
My = 27D;T,Dz+ + 0*1y). (I11.4)

Here, R € CHI and T, € CHIXUT gre block matrices with
blocks indexed by —B < k1,ko < B and are defined as:

(To)kiks = plk1 = kol xq,,
Rk, = ﬁ[kl]]lQ‘k”Xl?

where 1;,; denotes a matrix of ones of size i X j.

rel0,1],

2k, gle™*Puy , (0,7). (I11.1)

1=1,...,n,

A. Frequency Marching Algorithm

We consider a frequency marching algorithm, similar to
Algorithm 1. The difference stems from the addition of the
radial coordinate that provides more information and, thus,
stability, as shown in a related problem in [18].

Proposition IIL.2. Assuming M o = My, Mo oe = Mo, there
exists a frequency marching algorithm, analog to Algorithm 1,
that recovers & and p exactly, up to a global rotation.

B. Spectral Algorithm

As in the 1-D case, a spectral algorithm can be devised for
the 2-D setting, analogous to Algorithm 2, with Toeplitz and
circulant matrices replaced by their block counterparts. If the
block Toeplitz matrix is block circulant, the algorithm recovers
the signal (up to a global rotation) from second-moment data.
Otherwise, the error scales with its distance from the nearest
block circulant matrix.
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Fig. 1: (a) Recovery error of the frequency marching and spectral algorithms, with 20% error margins, as a function of the SNR
for n = 105 observations. (b) Recovery error of the frequency marching and spectral algorithms, with 20% error margins, as a
function of the number of observations for SNR = 100. (c) Recovery error of the spectral algorithm as a function of Sg(p),

compared to the theoretical bound from Theorem II.4.

IV. NUMERICAL RESULTS

We present the numerical results of both algorithms for the
2-D case. The performance for the 1-D case is similar, but
due to space constraints, it is omitted. In all experiments, the
ground truth image was generated with B = 10 and @ = 2.
The magnitudes of all Fourier—Bessel coefficients were set to
one, and their phases were drawn from a uniform distribution,
subject to the constraint that the image remains real. The real
and imaginary components of the distribution were initially
drawn from a uniform distribution over the interval [0, 1]
and subsequently corrected according to Equation (II.6) to
ensure Sp(p) = 0 while preserving both the positivity and
normalization of the distribution in the signal domain (as it is
a distribution). Next, we perturbed the distribution as

plk] — eE plk], (IV.1)

with 7 = 0.1. In the experiments presented in Figure 1a and 1b,
this perturbation resulted in Sg(p) = 0.0014. The observations
y; are then generated, with Gaussian noise added according to
Equation (II1.2). We define the recovery error as

2

Ly (IV.2)

. X —ik o
minge(o om)||Zest — €7 © &

12
[y

In the experiment whose results are shown in Figure la, we
present the recovery error as a function of the SNR, defined

by
Zk,q P:i[kvq]
(2B +1)Qo?’

with n = 10 observations. We report the median error with
20% error margins, computed over 400 trials per SNR value.
As expected, the error decreases as the SNR increases. For
higher SNR values, the error of the spectral algorithm stagnates
because Sp(p) # 0 (see Theorem IL.4). In contrast, the error of
the frequency marching algorithm approaches zero at high SNR,
as predicted by Proposition III.2. The error rate of the frequency
marching is proportional to 1/SNR. However, at lower SNR
values, the spectral algorithm outperforms the frequency
marching algorithm. This is because the spectral algorithm
processes all second-moment information simultaneously, while

SNR =

the frequency marching algorithm, due to its sequential nature,
accumulates errors over frequencies.

The experiment shown in Figure 1b presents the recovery
error as a function of the number of observations for SNR =
100. We report the median error over 800 trials with 20% error
margins. In this high-SNR regime, the frequency marching
algorithm outperforms the spectral algorithm, achieving an
error rate proportional to 1/n.

In the experiment presented in Figure lc, we assume access
to the exact moments and compare the error of the spectral
algorithm with the theoretical bound from Theorem II.4. This
comparison is performed by varying the parameter 1 in (IV.1)
from 10~! to 103 and optimizing over all possible rotations
of p to achieve the minimal bound. The theoretical bound
closely follows the numerical results of the spectral algorithm
as a function of Sgp(p). However, a noticeable gap remains,
indicating that Theorem II.4 is not tight.

V. VISION: PROVABLE ALGORITHMS FOR CRYO-EM

This paper introduces provable frequency marching and
spectral algorithms for the MRA problem with the group
of in-plane rotations, SO(2). This represents a significant
advancement toward developing rigorous algorithms for more
complex MRA models.

Our primary motivation is cryo-EM, which can be modeled
as an MRA model with the group of 3-D rotations SO(3) and
an additional linear operator (which is not modeled by (I.1)) [8].
Despite being widely used and occasionally yielding excellent
results, existing cryo-EM algorithms lack theoretical guarantees
and robust validation measures. Moreover, cryo-EM algorithms
are susceptible to well-documented pitfalls and model biases,
such as the “Einstein from noise” phenomenon [16], [17].
To address these challenges, our vision is to design provable
algorithms for cryo-EM—whether through frequency march-
ing, spectral methods, or alternative techniques—to enhance
confidence in cryo-EM reconstructions and ultimately drive
new biological discoveries.
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